带真空的二维非均质双轴向列液晶流动强解的全局拟合性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yiyi Feng , Yang Liu
{"title":"带真空的二维非均质双轴向列液晶流动强解的全局拟合性","authors":"Yiyi Feng ,&nbsp;Yang Liu","doi":"10.1016/j.cnsns.2024.108334","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the inhomogeneous biaxial nematic liquid crystal flow in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the velocity <span><math><mi>u</mi></math></span> and the orthogonal unit vector fields <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></math></span> admit the Dirichlet and Neumann boundary condition, respectively. By applying piecewise estimate and continuity method, we get the global existence of strong solutions, provided that the basic energy is suitably small. Our result may be regarded as an extension and improvement of Gong-Lin (2022) and Li-Liu-Zhong (2017) to the Neumann boundary condition, where the initial vacuum is allowed. Some new techniques are developed in order to deal with integral estimates caused by the boundary condition, and more complicated model.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005197/pdfft?md5=d511b81fc814c75f9abbf011ebb1c0cb&pid=1-s2.0-S1007570424005197-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of strong solutions to the two-dimensional inhomogeneous biaxial nematic liquid crystal flow with vacuum\",\"authors\":\"Yiyi Feng ,&nbsp;Yang Liu\",\"doi\":\"10.1016/j.cnsns.2024.108334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the inhomogeneous biaxial nematic liquid crystal flow in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the velocity <span><math><mi>u</mi></math></span> and the orthogonal unit vector fields <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></math></span> admit the Dirichlet and Neumann boundary condition, respectively. By applying piecewise estimate and continuity method, we get the global existence of strong solutions, provided that the basic energy is suitably small. Our result may be regarded as an extension and improvement of Gong-Lin (2022) and Li-Liu-Zhong (2017) to the Neumann boundary condition, where the initial vacuum is allowed. Some new techniques are developed in order to deal with integral estimates caused by the boundary condition, and more complicated model.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005197/pdfft?md5=d511b81fc814c75f9abbf011ebb1c0cb&pid=1-s2.0-S1007570424005197-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005197\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005197","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了光滑有界域 Ω⊂R2 中的非均质双轴向列液晶流,其中速度 u 和正交单位矢量场 (m,n) 分别采用了 Dirichlet 和 Neumann 边界条件。通过应用分段估计和连续性方法,我们得到了强解的全局存在性,前提是基本能量要适当小。我们的结果可视为龚林(2022)和李柳忠(2017)对允许初始真空的诺伊曼边界条件的扩展和改进。为了处理边界条件引起的积分估计和更复杂的模型,我们开发了一些新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness of strong solutions to the two-dimensional inhomogeneous biaxial nematic liquid crystal flow with vacuum

This paper considers the inhomogeneous biaxial nematic liquid crystal flow in a smooth bounded domain ΩR2, where the velocity u and the orthogonal unit vector fields (m,n) admit the Dirichlet and Neumann boundary condition, respectively. By applying piecewise estimate and continuity method, we get the global existence of strong solutions, provided that the basic energy is suitably small. Our result may be regarded as an extension and improvement of Gong-Lin (2022) and Li-Liu-Zhong (2017) to the Neumann boundary condition, where the initial vacuum is allowed. Some new techniques are developed in order to deal with integral estimates caused by the boundary condition, and more complicated model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信