{"title":"具有一般流动性的艾伦-卡恩方程的线性二阶无条件最大约束原则保留方案","authors":"Dianming Hou , Tianxiang Zhang , Hongyi Zhu","doi":"10.1016/j.apnum.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the case of constant mobility and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 222-243"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility\",\"authors\":\"Dianming Hou , Tianxiang Zhang , Hongyi Zhu\",\"doi\":\"10.1016/j.apnum.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the case of constant mobility and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"207 \",\"pages\":\"Pages 222-243\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002423\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002423","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility
In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in -norm for the case of constant mobility and -norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.