{"title":"人工智能模型在污水处理中的应用与创新","authors":"Wen-Long Xu, Ya-Jun Wang, Yi-Tong Wang, Jun-Guo Li, Ya-Nan Zeng, Hua-Wei Guo, Huan Liu, Kai-Li Dong, Liang-Yi Zhang","doi":"10.1016/j.jconhyd.2024.104426","DOIUrl":null,"url":null,"abstract":"<div><p>At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and innovation of artificial intelligence models in wastewater treatment\",\"authors\":\"Wen-Long Xu, Ya-Jun Wang, Yi-Tong Wang, Jun-Guo Li, Ya-Nan Zeng, Hua-Wei Guo, Huan Liu, Kai-Li Dong, Liang-Yi Zhang\",\"doi\":\"10.1016/j.jconhyd.2024.104426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016977222400130X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016977222400130X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Application and innovation of artificial intelligence models in wastewater treatment
At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.