电磁冲击下 Cu/TiB2 复合材料在压实过程中的致密化行为

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"电磁冲击下 Cu/TiB2 复合材料在压实过程中的致密化行为","authors":"","doi":"10.1016/j.apt.2024.104653","DOIUrl":null,"url":null,"abstract":"<div><p>Cu/TiB<sub>2</sub> composite combines electrical conductivity and wear resistance, leading to its wide application prospect in electrical contact. In this study, electromagnetic impact was applied to compact Cu/TiB<sub>2</sub> powder. The interaction between powder and die under electromagnetic impact was analyzed by observing the surface quality, density, microstructure, and hardness. The results showed that when the energy was less than 21 kJ, the increase in energy could enhance density and tensile strength of the compact. However, when the energy exceeded 21 kJ, the state of compact hardly changed and burr near the edge would be worsened. Besides, the hardness of the upper surface increased gradually from the center to the edge, while the opposite was true for the lower surface, reflecting the spatial distribution of density. With the aid of simulation, it was found that the stress wave propagation influenced the densification behavior and led to the variation of density.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Densification behavior in compaction for Cu/TiB2 composite under electromagnetic impact\",\"authors\":\"\",\"doi\":\"10.1016/j.apt.2024.104653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cu/TiB<sub>2</sub> composite combines electrical conductivity and wear resistance, leading to its wide application prospect in electrical contact. In this study, electromagnetic impact was applied to compact Cu/TiB<sub>2</sub> powder. The interaction between powder and die under electromagnetic impact was analyzed by observing the surface quality, density, microstructure, and hardness. The results showed that when the energy was less than 21 kJ, the increase in energy could enhance density and tensile strength of the compact. However, when the energy exceeded 21 kJ, the state of compact hardly changed and burr near the edge would be worsened. Besides, the hardness of the upper surface increased gradually from the center to the edge, while the opposite was true for the lower surface, reflecting the spatial distribution of density. With the aid of simulation, it was found that the stress wave propagation influenced the densification behavior and led to the variation of density.</p></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883124003297\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003297","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

铜/TiB2 复合材料兼具导电性和耐磨性,因此在电接触领域具有广泛的应用前景。在这项研究中,对 Cu/TiB2 粉末进行了电磁冲击。通过观察表面质量、密度、微观结构和硬度,分析了电磁冲击下粉末与模具之间的相互作用。结果表明,当能量小于 21 kJ 时,能量的增加可提高压制物的密度和抗拉强度。然而,当能量超过 21 kJ 时,压实状态几乎没有变化,边缘附近的毛刺会加剧。此外,上表面的硬度从中心到边缘逐渐增加,而下表面则相反,这反映了密度的空间分布。借助模拟发现,应力波的传播影响了致密化行为,并导致了密度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Densification behavior in compaction for Cu/TiB2 composite under electromagnetic impact

Densification behavior in compaction for Cu/TiB2 composite under electromagnetic impact

Cu/TiB2 composite combines electrical conductivity and wear resistance, leading to its wide application prospect in electrical contact. In this study, electromagnetic impact was applied to compact Cu/TiB2 powder. The interaction between powder and die under electromagnetic impact was analyzed by observing the surface quality, density, microstructure, and hardness. The results showed that when the energy was less than 21 kJ, the increase in energy could enhance density and tensile strength of the compact. However, when the energy exceeded 21 kJ, the state of compact hardly changed and burr near the edge would be worsened. Besides, the hardness of the upper surface increased gradually from the center to the edge, while the opposite was true for the lower surface, reflecting the spatial distribution of density. With the aid of simulation, it was found that the stress wave propagation influenced the densification behavior and led to the variation of density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信