半空中稳定 p-Stokes 系统的利乌维尔式问题

IF 2.4 2区 数学 Q1 MATHEMATICS
Kyungkeun Kang , Michael Růžička
{"title":"半空中稳定 p-Stokes 系统的利乌维尔式问题","authors":"Kyungkeun Kang ,&nbsp;Michael Růžička","doi":"10.1016/j.jde.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Liouville problem for the steady <em>p</em>-Stokes system in the half-space. We prove that a bounded weak solution of the <em>p</em>-Stokes system with <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> vanishes in two dimensions. For the three dimensional case, the same result is concluded, provided that <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type problem for the steady p-Stokes system in the half-space\",\"authors\":\"Kyungkeun Kang ,&nbsp;Michael Růžička\",\"doi\":\"10.1016/j.jde.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Liouville problem for the steady <em>p</em>-Stokes system in the half-space. We prove that a bounded weak solution of the <em>p</em>-Stokes system with <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> vanishes in two dimensions. For the three dimensional case, the same result is concluded, provided that <span><math><mi>p</mi><mo>&gt;</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400593X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400593X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了半空间中稳定 p-Stokes 系统的 Liouville 问题。我们证明了 p-Stokes 系统中 p>1 的有界弱解在二维中消失。对于三维情况,只要 p>53,也会得出同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville type problem for the steady p-Stokes system in the half-space

We study the Liouville problem for the steady p-Stokes system in the half-space. We prove that a bounded weak solution of the p-Stokes system with p>1 vanishes in two dimensions. For the three dimensional case, the same result is concluded, provided that p>53.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信