利用臭氧和过一硫酸盐活化的 FeS2 纳米粒子在水生介质中降解阿司匹林的声电化学方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Elham Aseman-Bashiz , Hossein Sayyaf
{"title":"利用臭氧和过一硫酸盐活化的 FeS2 纳米粒子在水生介质中降解阿司匹林的声电化学方法","authors":"Elham Aseman-Bashiz ,&nbsp;Hossein Sayyaf","doi":"10.1016/j.jconhyd.2024.104419","DOIUrl":null,"url":null,"abstract":"<div><p>The catalytic performance of nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span> in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/PMS and nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/<span><math><msub><mi>O</mi><mn>3</mn></msub></math></span> sonoelectrochemical systems, respectively. Water anions, especially<span><math><mspace></mspace><msubsup><mi>HCO</mi><mn>3</mn><mo>−</mo></msubsup></math></span> (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that <span><math><msubsup><mi>SO</mi><mn>4</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup><mspace></mspace></math></span>and <span><math><msup><mi>HO</mi><mo>•</mo></msup></math></span> were the key to ASP degradation in nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/PMS and nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/<span><math><msub><mi>O</mi><mn>3</mn></msub></math></span> systems, respectively. The effective activation of oxidants due to the ideal distribution of <span><math><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonoelectrochemical degradation of aspirin in aquatic medium using ozone and peroxymonosulfate activated with FeS2 nanoparticles\",\"authors\":\"Elham Aseman-Bashiz ,&nbsp;Hossein Sayyaf\",\"doi\":\"10.1016/j.jconhyd.2024.104419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The catalytic performance of nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span> in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/PMS and nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/<span><math><msub><mi>O</mi><mn>3</mn></msub></math></span> sonoelectrochemical systems, respectively. Water anions, especially<span><math><mspace></mspace><msubsup><mi>HCO</mi><mn>3</mn><mo>−</mo></msubsup></math></span> (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that <span><math><msubsup><mi>SO</mi><mn>4</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup><mspace></mspace></math></span>and <span><math><msup><mi>HO</mi><mo>•</mo></msup></math></span> were the key to ASP degradation in nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/PMS and nano-<span><math><msub><mi>FeS</mi><mn>2</mn></msub></math></span>/<span><math><msub><mi>O</mi><mn>3</mn></msub></math></span> systems, respectively. The effective activation of oxidants due to the ideal distribution of <span><math><msup><mi>Fe</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224001232\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224001232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

首次研究了纳米 FeS2 在过一硫酸盐(PMS)和臭氧的声电化学活化过程中去除阿司匹林(ASP)的催化性能。通过 XRD 和 FTIR 分析确认了催化剂中的晶体结构和铁键。在纳米 FeS2/PMS 和纳米 FeS2/O3 声电化学体系中,30 分钟内阿司匹林(TOC)的去除率分别为 99.2 %(81.6 %)和 98.6 %(77.4 %)。水阴离子,尤其是 HCO3-(接近 50%),对 ASP 的去除有抑制作用。探针证实,SO4-和 HO-分别是纳米 FeS2/PMS 和纳米 FeS2/O3 系统降解 ASP 的关键。催化剂理想的 Fe2+ 分布导致氧化剂的有效活化是去除 ASP 的主要机制,其中电流(EC)和超声波(US)通过回收铁离子、溶解和清洁催化剂发挥了关键作用。LC-MS 分析确定了 ASP 降解途径中的 13 种副产品。拟议的声电化学系统的能耗低于以前的类似系统。这项研究为制药废水修复提供了经济、可持续的混合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sonoelectrochemical degradation of aspirin in aquatic medium using ozone and peroxymonosulfate activated with FeS2 nanoparticles

Sonoelectrochemical degradation of aspirin in aquatic medium using ozone and peroxymonosulfate activated with FeS2 nanoparticles

The catalytic performance of nano-FeS2 in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-FeS2/PMS and nano-FeS2/O3 sonoelectrochemical systems, respectively. Water anions, especiallyHCO3 (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that SO4and HO were the key to ASP degradation in nano-FeS2/PMS and nano-FeS2/O3 systems, respectively. The effective activation of oxidants due to the ideal distribution of Fe2+ by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信