{"title":"热浴对加速框架中潘查拉特南-浆果相的影响","authors":"Debasish Ghosh, Bibhas Ranjan Majhi","doi":"10.1016/j.physletb.2024.139015","DOIUrl":null,"url":null,"abstract":"<div><p>A uniformly accelerated atom captures Pancharatnam-Berry phase in its quantum state and the phase factor depends on the vacuum fluctuation of the background quantum fields. We observe that the thermal nature of the fields further affects the induced phase. Interestingly the induced phase captures the exchange symmetry between the Unruh and real thermal baths. This observation further supports the claim that the Unruh thermal bath mimics a real thermal bath. Moreover for certain values of system parameters and at high temperature, the phase is enhanced compared to zero temperature situation. However the required temperature to observe the phase experimentally is so high that the detection of Unruh effect through this is not possible within the current technology.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005732/pdfft?md5=c6ce986b1c621fbac74b67b6bf92bb04&pid=1-s2.0-S0370269324005732-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of thermal bath on Pancharatnam-Berry phase in an accelerated frame\",\"authors\":\"Debasish Ghosh, Bibhas Ranjan Majhi\",\"doi\":\"10.1016/j.physletb.2024.139015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A uniformly accelerated atom captures Pancharatnam-Berry phase in its quantum state and the phase factor depends on the vacuum fluctuation of the background quantum fields. We observe that the thermal nature of the fields further affects the induced phase. Interestingly the induced phase captures the exchange symmetry between the Unruh and real thermal baths. This observation further supports the claim that the Unruh thermal bath mimics a real thermal bath. Moreover for certain values of system parameters and at high temperature, the phase is enhanced compared to zero temperature situation. However the required temperature to observe the phase experimentally is so high that the detection of Unruh effect through this is not possible within the current technology.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005732/pdfft?md5=c6ce986b1c621fbac74b67b6bf92bb04&pid=1-s2.0-S0370269324005732-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005732\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324005732","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of thermal bath on Pancharatnam-Berry phase in an accelerated frame
A uniformly accelerated atom captures Pancharatnam-Berry phase in its quantum state and the phase factor depends on the vacuum fluctuation of the background quantum fields. We observe that the thermal nature of the fields further affects the induced phase. Interestingly the induced phase captures the exchange symmetry between the Unruh and real thermal baths. This observation further supports the claim that the Unruh thermal bath mimics a real thermal bath. Moreover for certain values of system parameters and at high temperature, the phase is enhanced compared to zero temperature situation. However the required temperature to observe the phase experimentally is so high that the detection of Unruh effect through this is not possible within the current technology.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.