{"title":"甲壳动物免疫防御中的细胞死亡","authors":"Zeyan Chen, Muhammad Tayyab, Defu Yao, Jude Juventus Aweya, Zhihong Zheng, Xianliang Zhao, Zhongyang Lin, Yueling Zhang","doi":"10.1111/raq.12976","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cell death mechanisms in crustaceans are a complex interplay of processes essential for maintaining cellular homeostasis and immune defense. Modes of cell death like apoptosis, necroptosis, and necrosis are well-documented in crustaceans, serving crucial roles in removing damaged or infected cells. Unlike in other organisms, crustaceans likely lack pyroptosis, a type of programmed cell death associated with innate immunity and inflammation, because they do not possess the gasdermin genes essential for this process. Recently, NETosis and ferroptosis have emerged as significant mechanisms in pathogen defense. NETosis, involving the release of DNA fibers and antimicrobial proteins, helps trap and neutralize pathogens, while ferroptosis, an iron-dependent form of cell death, contributes to lipid peroxidation and immune responses. Cuproptosis, although not yet studied in the context of crustacean immunity, shows potential crosstalk with ferroptosis, particularly in the regulation of metal ion homeostasis, oxidative stress, and cellular metabolism. Understanding these mechanisms offers promising applications in aquaculture, such as developing targeted immune modulators and enhancing disease resistance in economically important crustacean species.</p>\n </div>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"17 1","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Death in Crustacean Immune Defense\",\"authors\":\"Zeyan Chen, Muhammad Tayyab, Defu Yao, Jude Juventus Aweya, Zhihong Zheng, Xianliang Zhao, Zhongyang Lin, Yueling Zhang\",\"doi\":\"10.1111/raq.12976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cell death mechanisms in crustaceans are a complex interplay of processes essential for maintaining cellular homeostasis and immune defense. Modes of cell death like apoptosis, necroptosis, and necrosis are well-documented in crustaceans, serving crucial roles in removing damaged or infected cells. Unlike in other organisms, crustaceans likely lack pyroptosis, a type of programmed cell death associated with innate immunity and inflammation, because they do not possess the gasdermin genes essential for this process. Recently, NETosis and ferroptosis have emerged as significant mechanisms in pathogen defense. NETosis, involving the release of DNA fibers and antimicrobial proteins, helps trap and neutralize pathogens, while ferroptosis, an iron-dependent form of cell death, contributes to lipid peroxidation and immune responses. Cuproptosis, although not yet studied in the context of crustacean immunity, shows potential crosstalk with ferroptosis, particularly in the regulation of metal ion homeostasis, oxidative stress, and cellular metabolism. Understanding these mechanisms offers promising applications in aquaculture, such as developing targeted immune modulators and enhancing disease resistance in economically important crustacean species.</p>\\n </div>\",\"PeriodicalId\":227,\"journal\":{\"name\":\"Reviews in Aquaculture\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/raq.12976\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.12976","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Cell death mechanisms in crustaceans are a complex interplay of processes essential for maintaining cellular homeostasis and immune defense. Modes of cell death like apoptosis, necroptosis, and necrosis are well-documented in crustaceans, serving crucial roles in removing damaged or infected cells. Unlike in other organisms, crustaceans likely lack pyroptosis, a type of programmed cell death associated with innate immunity and inflammation, because they do not possess the gasdermin genes essential for this process. Recently, NETosis and ferroptosis have emerged as significant mechanisms in pathogen defense. NETosis, involving the release of DNA fibers and antimicrobial proteins, helps trap and neutralize pathogens, while ferroptosis, an iron-dependent form of cell death, contributes to lipid peroxidation and immune responses. Cuproptosis, although not yet studied in the context of crustacean immunity, shows potential crosstalk with ferroptosis, particularly in the regulation of metal ion homeostasis, oxidative stress, and cellular metabolism. Understanding these mechanisms offers promising applications in aquaculture, such as developing targeted immune modulators and enhancing disease resistance in economically important crustacean species.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.