Sudip Halder, Supriya Pan, Paulo M. Sá, Tapan Saha
{"title":"以暖膨胀范式为动机的耦合幻影宇宙学模型","authors":"Sudip Halder, Supriya Pan, Paulo M. Sá, Tapan Saha","doi":"10.1103/physrevd.110.063529","DOIUrl":null,"url":null,"abstract":"In this article, we investigate a coupled phantom dark-energy cosmological model in which the coupling term between a phantom scalar field with an exponential potential and a pressureless dark-matter fluid is motivated by the warm inflationary paradigm. Using methods of qualitative analysis of dynamical systems, complemented by numerical solutions of the evolution equations, we study the late-time behavior of our model. We show that contrary to the uncoupled scenario, the coupled phantom model admits accelerated scaling solutions. However, they do not correspond to a final state of the Universe’s evolution and, therefore, cannot be used to solve the cosmological coincidence problem. Furthermore, we show that, for certain coupling parameter values, the total equation-of-state parameter’s asymptotic behavior is significantly changed when compared to the uncoupled scenario, allowing for solutions less phantom even for steeper potentials of the phantom scalar field.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"149 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled phantom cosmological model motivated by the warm inflationary paradigm\",\"authors\":\"Sudip Halder, Supriya Pan, Paulo M. Sá, Tapan Saha\",\"doi\":\"10.1103/physrevd.110.063529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate a coupled phantom dark-energy cosmological model in which the coupling term between a phantom scalar field with an exponential potential and a pressureless dark-matter fluid is motivated by the warm inflationary paradigm. Using methods of qualitative analysis of dynamical systems, complemented by numerical solutions of the evolution equations, we study the late-time behavior of our model. We show that contrary to the uncoupled scenario, the coupled phantom model admits accelerated scaling solutions. However, they do not correspond to a final state of the Universe’s evolution and, therefore, cannot be used to solve the cosmological coincidence problem. Furthermore, we show that, for certain coupling parameter values, the total equation-of-state parameter’s asymptotic behavior is significantly changed when compared to the uncoupled scenario, allowing for solutions less phantom even for steeper potentials of the phantom scalar field.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.063529\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.063529","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Coupled phantom cosmological model motivated by the warm inflationary paradigm
In this article, we investigate a coupled phantom dark-energy cosmological model in which the coupling term between a phantom scalar field with an exponential potential and a pressureless dark-matter fluid is motivated by the warm inflationary paradigm. Using methods of qualitative analysis of dynamical systems, complemented by numerical solutions of the evolution equations, we study the late-time behavior of our model. We show that contrary to the uncoupled scenario, the coupled phantom model admits accelerated scaling solutions. However, they do not correspond to a final state of the Universe’s evolution and, therefore, cannot be used to solve the cosmological coincidence problem. Furthermore, we show that, for certain coupling parameter values, the total equation-of-state parameter’s asymptotic behavior is significantly changed when compared to the uncoupled scenario, allowing for solutions less phantom even for steeper potentials of the phantom scalar field.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.