{"title":"氮信号因子触发裂殖酵母呼吸样基因表达程序","authors":"Shin Ohsawa,Michaela Schwaiger,Vytautas Iesmantavicius,Rio Hashimoto,Hiromitsu Moriyama,Hiroaki Matoba,Go Hirai,Mikiko Sodeoka,Atsushi Hashimoto,Akihisa Matsuyama,Minoru Yoshida,Yoko Yashiroda,Marc Bühler","doi":"10.1038/s44318-024-00224-z","DOIUrl":null,"url":null,"abstract":"Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast.\",\"authors\":\"Shin Ohsawa,Michaela Schwaiger,Vytautas Iesmantavicius,Rio Hashimoto,Hiromitsu Moriyama,Hiroaki Matoba,Go Hirai,Mikiko Sodeoka,Atsushi Hashimoto,Akihisa Matsuyama,Minoru Yoshida,Yoko Yashiroda,Marc Bühler\",\"doi\":\"10.1038/s44318-024-00224-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00224-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-024-00224-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
微生物进化出了复杂的通讯系统,使群体中的单个细胞能够发送和接收信号,以应对直接环境的变化。在裂殖酵母Schizosaccharomyces pombe中,氧脂素氮信号因子(NSF)就是这种通讯系统的一部分,其功能是调节不同氮源的使用。然而,人们对NSF发挥作用的途径和机制知之甚少。在这里,我们发现 NSF 与线粒体硫化物:醌氧化还原酶 Hmt2 发生了物理作用,并在碳源不变的情况下促使基因表达程序从发酵模式转变为呼吸模式。我们的研究结果表明,NSF 的活性并不局限于氮代谢,它还可以作为一种流变调节器,使 S. pombe 细胞群为即将出现的首选营养物质短缺做好准备。
Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast.
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.