水平曲线的微柔性和局部可积分性

IF 0.8 3区 数学 Q2 MATHEMATICS
Álvaro del Pino, Tobias Shin
{"title":"水平曲线的微柔性和局部可积分性","authors":"Álvaro del Pino,&nbsp;Tobias Shin","doi":"10.1002/mana.202200306","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>ξ</mi>\n <annotation>$\\xi$</annotation>\n </semantics></math> be an analytic bracket-generating distribution. We show that the subspace of germs that are singular (in the sense of control theory) has infinite codimension within the space of germs of smooth curves tangent to <span></span><math>\n <semantics>\n <mi>ξ</mi>\n <annotation>$\\xi$</annotation>\n </semantics></math>. We formalize this as an asymptotic statement about finite jets of tangent curves. This solves, in the analytic setting, a conjecture of Eliashberg and Mishachev regarding an earlier claim by Gromov about the microflexibility of the tangency condition.</p><p>From these statements it follows, by an argument due to Gromov, that the <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principle holds for maps and immersions transverse to <span></span><math>\n <semantics>\n <mi>ξ</mi>\n <annotation>$\\xi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 9","pages":"3252-3287"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202200306","citationCount":"0","resultStr":"{\"title\":\"Microflexiblity and local integrability of horizontal curves\",\"authors\":\"Álvaro del Pino,&nbsp;Tobias Shin\",\"doi\":\"10.1002/mana.202200306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>ξ</mi>\\n <annotation>$\\\\xi$</annotation>\\n </semantics></math> be an analytic bracket-generating distribution. We show that the subspace of germs that are singular (in the sense of control theory) has infinite codimension within the space of germs of smooth curves tangent to <span></span><math>\\n <semantics>\\n <mi>ξ</mi>\\n <annotation>$\\\\xi$</annotation>\\n </semantics></math>. We formalize this as an asymptotic statement about finite jets of tangent curves. This solves, in the analytic setting, a conjecture of Eliashberg and Mishachev regarding an earlier claim by Gromov about the microflexibility of the tangency condition.</p><p>From these statements it follows, by an argument due to Gromov, that the <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principle holds for maps and immersions transverse to <span></span><math>\\n <semantics>\\n <mi>ξ</mi>\\n <annotation>$\\\\xi$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 9\",\"pages\":\"3252-3287\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202200306\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200306\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200306","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 ξ $\xi$ 是一个解析括号生成分布。我们证明,在与 ξ $\xi$ 相切的光滑曲线的胚芽空间中,奇异胚芽的子空间(在控制论的意义上)具有无限的开方维。我们将其形式化为关于切线曲线的有限射流的渐近声明。从这些陈述中,通过格罗莫夫的论证,h $h $ 原则对于横向于 ξ $\xi$ 的映射和浸入是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microflexiblity and local integrability of horizontal curves

Let ξ $\xi$ be an analytic bracket-generating distribution. We show that the subspace of germs that are singular (in the sense of control theory) has infinite codimension within the space of germs of smooth curves tangent to ξ $\xi$ . We formalize this as an asymptotic statement about finite jets of tangent curves. This solves, in the analytic setting, a conjecture of Eliashberg and Mishachev regarding an earlier claim by Gromov about the microflexibility of the tangency condition.

From these statements it follows, by an argument due to Gromov, that the h $h$ -principle holds for maps and immersions transverse to ξ $\xi$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信