{"title":"用于模拟混凝土填充钢管梁柱中钢管循环行为的软化单轴材料模型","authors":"Shiye Wang, Wei Wang, Dimitrios G. Lignos","doi":"10.1002/eqe.4204","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new uniaxial constitutive material formulation with softening for simulating the inelastic behavior of steel rectangular tubes in concrete-filled steel tube (CFST) members. The primary behavioral characteristics of the steel tube in CFST members are isolated and pronounced through a carefully designed experimental campaign with CFST specimens subjected to uniaxial strain-based loading protocols. The model is expressed in an effective stress–strain domain, where the effective uniaxial strain is defined as the uniaxial displacement within a dissipative zone over a predefined length. In the pre-peak state, the proposed model can effectively capture the combined kinematic/isotropic hardening and Bauschinger effect—characteristic of mild structural steels—within the framework of rate-independent plasticity. In the post-peak state, the proposed model traces strength deterioration due to outward local buckling, which is a characteristic nonlinear geometric instability in CFST members due to the presence of the filled concrete in the steel tube. The proposed constitutive formulation incorporates a softening branch that exponentially decays to trace the stabilization of the outward buckling wave within the buckling region in successive inelastic loading cycles. Cyclic deterioration of the effective stress is explicitly considered via an energy-based rule. The proposed model is calibrated to a CFST dataset. Regression equations are proposed for predicting the input model parameters. These equations cover a wide range of geometric parameters and structural steel materials in CFST members. Comparisons with prior tests on actual CFST beam-columns under planar symmetric cyclic loading suggest that conventional 2-dimensional displacement-based beam-column elements can predict the full-range of the hysteretic behavior of the CFST members with the proposed constitutive formulation including cases where the post-peak response of CFST members exhibits negative stiffness.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4204","citationCount":"0","resultStr":"{\"title\":\"Uniaxial material model with softening for simulating the cyclic behavior of steel tubes in concrete-filled steel tube beam-columns\",\"authors\":\"Shiye Wang, Wei Wang, Dimitrios G. Lignos\",\"doi\":\"10.1002/eqe.4204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new uniaxial constitutive material formulation with softening for simulating the inelastic behavior of steel rectangular tubes in concrete-filled steel tube (CFST) members. The primary behavioral characteristics of the steel tube in CFST members are isolated and pronounced through a carefully designed experimental campaign with CFST specimens subjected to uniaxial strain-based loading protocols. The model is expressed in an effective stress–strain domain, where the effective uniaxial strain is defined as the uniaxial displacement within a dissipative zone over a predefined length. In the pre-peak state, the proposed model can effectively capture the combined kinematic/isotropic hardening and Bauschinger effect—characteristic of mild structural steels—within the framework of rate-independent plasticity. In the post-peak state, the proposed model traces strength deterioration due to outward local buckling, which is a characteristic nonlinear geometric instability in CFST members due to the presence of the filled concrete in the steel tube. The proposed constitutive formulation incorporates a softening branch that exponentially decays to trace the stabilization of the outward buckling wave within the buckling region in successive inelastic loading cycles. Cyclic deterioration of the effective stress is explicitly considered via an energy-based rule. The proposed model is calibrated to a CFST dataset. Regression equations are proposed for predicting the input model parameters. These equations cover a wide range of geometric parameters and structural steel materials in CFST members. Comparisons with prior tests on actual CFST beam-columns under planar symmetric cyclic loading suggest that conventional 2-dimensional displacement-based beam-column elements can predict the full-range of the hysteretic behavior of the CFST members with the proposed constitutive formulation including cases where the post-peak response of CFST members exhibits negative stiffness.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4204\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4204\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4204","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Uniaxial material model with softening for simulating the cyclic behavior of steel tubes in concrete-filled steel tube beam-columns
This paper presents a new uniaxial constitutive material formulation with softening for simulating the inelastic behavior of steel rectangular tubes in concrete-filled steel tube (CFST) members. The primary behavioral characteristics of the steel tube in CFST members are isolated and pronounced through a carefully designed experimental campaign with CFST specimens subjected to uniaxial strain-based loading protocols. The model is expressed in an effective stress–strain domain, where the effective uniaxial strain is defined as the uniaxial displacement within a dissipative zone over a predefined length. In the pre-peak state, the proposed model can effectively capture the combined kinematic/isotropic hardening and Bauschinger effect—characteristic of mild structural steels—within the framework of rate-independent plasticity. In the post-peak state, the proposed model traces strength deterioration due to outward local buckling, which is a characteristic nonlinear geometric instability in CFST members due to the presence of the filled concrete in the steel tube. The proposed constitutive formulation incorporates a softening branch that exponentially decays to trace the stabilization of the outward buckling wave within the buckling region in successive inelastic loading cycles. Cyclic deterioration of the effective stress is explicitly considered via an energy-based rule. The proposed model is calibrated to a CFST dataset. Regression equations are proposed for predicting the input model parameters. These equations cover a wide range of geometric parameters and structural steel materials in CFST members. Comparisons with prior tests on actual CFST beam-columns under planar symmetric cyclic loading suggest that conventional 2-dimensional displacement-based beam-column elements can predict the full-range of the hysteretic behavior of the CFST members with the proposed constitutive formulation including cases where the post-peak response of CFST members exhibits negative stiffness.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.