大陆尺度的准高分辨率滑坡易感性建模

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-09-11 DOI:10.1029/2024AV001214
Benjamin B. Mirus, Gina M. Belair, Nathan J. Wood, Jeanne Jones, Sabrina N. Martinez
{"title":"大陆尺度的准高分辨率滑坡易感性建模","authors":"Benjamin B. Mirus,&nbsp;Gina M. Belair,&nbsp;Nathan J. Wood,&nbsp;Jeanne Jones,&nbsp;Sabrina N. Martinez","doi":"10.1029/2024AV001214","DOIUrl":null,"url":null,"abstract":"<p>Landslide susceptibility maps are fundamental tools for risk reduction, but the coarse resolution of current continental-scale models is insufficient for local application. Complex relations between topographic and environmental attributes characterizing landslide susceptibility at local scales are not transferrable across areas without landslide data. Existing maps with multiple susceptibility classifications under-represent landslide potential in moderate and gently sloping terrain. We leverage an extensive landslide database (<i>N</i> = 613,724), a high-resolution digital elevation model (10-m), and high-performance computing resources, to develop a new nationwide susceptibility map for the contiguous United States, Hawaii, Alaska, and Puerto Rico. We calculate four alternative linear and nonlinear thresholds of topographic slope and relief using an objective split-sample calibration. We down-sample our results to a 90-m grid to account for uncertainty in the digital elevation model and landslide position, and evaluate these thresholds' ability to differentiate areas of greater susceptibility. The less conservative nonlinear model optimally balances our priorities of capturing observed landslides (99%) while minimizing area covered by susceptible terrain (43%). Independent evaluation with four statewide landslide inventories (<i>N</i> = 172,367) reinforces our model selection but highlights spatially variable performance. Therefore, we propose a novel approach to susceptibility classification using the concentration of landslide-prone terrain within each down-sampled grid. While landslides are possible within any cells containing susceptible terrain, those with the highest concentration capture the majority of observed landslides. Our new map characterizes landside susceptibility more consistently than prior models; our transparent classification approach also provides flexibility for accommodating different tolerances in risk reduction measures.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001214","citationCount":"0","resultStr":"{\"title\":\"Parsimonious High-Resolution Landslide Susceptibility Modeling at Continental Scales\",\"authors\":\"Benjamin B. Mirus,&nbsp;Gina M. Belair,&nbsp;Nathan J. Wood,&nbsp;Jeanne Jones,&nbsp;Sabrina N. Martinez\",\"doi\":\"10.1029/2024AV001214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslide susceptibility maps are fundamental tools for risk reduction, but the coarse resolution of current continental-scale models is insufficient for local application. Complex relations between topographic and environmental attributes characterizing landslide susceptibility at local scales are not transferrable across areas without landslide data. Existing maps with multiple susceptibility classifications under-represent landslide potential in moderate and gently sloping terrain. We leverage an extensive landslide database (<i>N</i> = 613,724), a high-resolution digital elevation model (10-m), and high-performance computing resources, to develop a new nationwide susceptibility map for the contiguous United States, Hawaii, Alaska, and Puerto Rico. We calculate four alternative linear and nonlinear thresholds of topographic slope and relief using an objective split-sample calibration. We down-sample our results to a 90-m grid to account for uncertainty in the digital elevation model and landslide position, and evaluate these thresholds' ability to differentiate areas of greater susceptibility. The less conservative nonlinear model optimally balances our priorities of capturing observed landslides (99%) while minimizing area covered by susceptible terrain (43%). Independent evaluation with four statewide landslide inventories (<i>N</i> = 172,367) reinforces our model selection but highlights spatially variable performance. Therefore, we propose a novel approach to susceptibility classification using the concentration of landslide-prone terrain within each down-sampled grid. While landslides are possible within any cells containing susceptible terrain, those with the highest concentration capture the majority of observed landslides. Our new map characterizes landside susceptibility more consistently than prior models; our transparent classification approach also provides flexibility for accommodating different tolerances in risk reduction measures.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

滑坡易发性地图是降低风险的基本工具,但目前大陆尺度模型的分辨率较低,不足以在当地应用。地形和环境属性之间的复杂关系表征了地方尺度的滑坡易发性,但无法在没有滑坡数据的地区进行转移。现有地图具有多种易感性分类,但对中等坡度和缓坡度地形的滑坡潜力反映不足。我们利用广泛的滑坡数据库(N = 613724)、高分辨率数字高程模型(10 米)和高性能计算资源,为美国毗连地区、夏威夷、阿拉斯加和波多黎各绘制了新的全国易损性地图。我们使用客观的分割样本校准法计算出地形坡度和地形起伏的四种线性和非线性阈值。我们将结果向下抽样至 90 米网格,以考虑数字高程模型和滑坡位置的不确定性,并评估这些阈值区分易受影响区域的能力。不那么保守的非线性模型在捕捉观测到的滑坡(99%)的同时,最大限度地减少了易受影响地形覆盖的面积(43%),在两者之间实现了最佳平衡。利用四个全州滑坡清单(N = 172367)进行的独立评估加强了我们对模型的选择,但也凸显了空间性能的可变性。因此,我们提出了一种新的方法,利用每个向下采样网格中易发生滑坡地形的集中程度来进行易滑坡性分类。虽然在任何包含易滑坡地形的单元内都有可能发生滑坡,但浓度最高的单元能捕捉到大部分观测到的滑坡。与之前的模型相比,我们的新地图能更一致地描述山体滑坡的易发性;我们透明的分类方法还能灵活地适应不同的风险降低措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parsimonious High-Resolution Landslide Susceptibility Modeling at Continental Scales

Parsimonious High-Resolution Landslide Susceptibility Modeling at Continental Scales

Landslide susceptibility maps are fundamental tools for risk reduction, but the coarse resolution of current continental-scale models is insufficient for local application. Complex relations between topographic and environmental attributes characterizing landslide susceptibility at local scales are not transferrable across areas without landslide data. Existing maps with multiple susceptibility classifications under-represent landslide potential in moderate and gently sloping terrain. We leverage an extensive landslide database (N = 613,724), a high-resolution digital elevation model (10-m), and high-performance computing resources, to develop a new nationwide susceptibility map for the contiguous United States, Hawaii, Alaska, and Puerto Rico. We calculate four alternative linear and nonlinear thresholds of topographic slope and relief using an objective split-sample calibration. We down-sample our results to a 90-m grid to account for uncertainty in the digital elevation model and landslide position, and evaluate these thresholds' ability to differentiate areas of greater susceptibility. The less conservative nonlinear model optimally balances our priorities of capturing observed landslides (99%) while minimizing area covered by susceptible terrain (43%). Independent evaluation with four statewide landslide inventories (N = 172,367) reinforces our model selection but highlights spatially variable performance. Therefore, we propose a novel approach to susceptibility classification using the concentration of landslide-prone terrain within each down-sampled grid. While landslides are possible within any cells containing susceptible terrain, those with the highest concentration capture the majority of observed landslides. Our new map characterizes landside susceptibility more consistently than prior models; our transparent classification approach also provides flexibility for accommodating different tolerances in risk reduction measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信