利用孔内光学力学在潘宁陷阱中实现原位可调的自旋-自旋相互作用

IF 4.4 Q1 OPTICS
Joseph H. Pham, Julian Y. Z. Jee, Alexander Rischka, Michael J. Biercuk, Robert N. Wolf
{"title":"利用孔内光学力学在潘宁陷阱中实现原位可调的自旋-自旋相互作用","authors":"Joseph H. Pham,&nbsp;Julian Y. Z. Jee,&nbsp;Alexander Rischka,&nbsp;Michael J. Biercuk,&nbsp;Robert N. Wolf","doi":"10.1002/qute.202400086","DOIUrl":null,"url":null,"abstract":"<p>Experimental implementations of quantum simulation must balance control-field-induced decoherence with the controllability of the quantum system. The ratio of coherent interaction strength to decoherence induced by stimulated emission in atomic systems is typically determined by hardware constraints, limiting the flexibility needed to explore different operating regimes. Here, an optomechanical system is presented for in situ tuning of the coherent spin-motion and spin-spin interaction strength in 2D ion crystals in a Penning trap. Enabled by precision closed-loop piezo-actuated positioners integrated into the confined space of a superconducting magnet's bore, the system allows tuning of the angle-of-incidence of Raman laser beams up to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mi>ODF</mi>\n </msub>\n <mo>≈</mo>\n <msup>\n <mn>28</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation>$\\theta _{\\mathrm{ODF}}\\approx 28^\\circ$</annotation>\n </semantics></math>, governing the ratio of coherent to incoherent light-matter interaction for fixed optical power. System characterization involves measurements of the induced mean-field spin precession under the application of an optical dipole force in ion crystals cooled below the Doppler limit through electromagnetically induced transparency cooling. These experiments show approximately a <span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\times 2$</annotation>\n </semantics></math> variation in the coherent to incoherent interaction ratio with changing <span></span><math>\n <semantics>\n <msub>\n <mi>θ</mi>\n <mtext>ODF</mtext>\n </msub>\n <annotation>$\\theta _{\\text{ODF}}$</annotation>\n </semantics></math>, consistent with theoretical predictions. The system stability is characterized over 6000 s, resulting in a drift rate of <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>.</mo>\n <msup>\n <mn>002</mn>\n <mo>∘</mo>\n </msup>\n </mrow>\n <annotation>$0.{002}^{\\circ}$</annotation>\n </semantics></math> h<sup>–1</sup>. These technical developments will be crucial in future quantum simulations and sensing applications.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400086","citationCount":"0","resultStr":"{\"title\":\"In Situ-Tunable Spin–Spin Interactions in a Penning Trap with In-Bore Optomechanics\",\"authors\":\"Joseph H. Pham,&nbsp;Julian Y. Z. Jee,&nbsp;Alexander Rischka,&nbsp;Michael J. Biercuk,&nbsp;Robert N. Wolf\",\"doi\":\"10.1002/qute.202400086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Experimental implementations of quantum simulation must balance control-field-induced decoherence with the controllability of the quantum system. The ratio of coherent interaction strength to decoherence induced by stimulated emission in atomic systems is typically determined by hardware constraints, limiting the flexibility needed to explore different operating regimes. Here, an optomechanical system is presented for in situ tuning of the coherent spin-motion and spin-spin interaction strength in 2D ion crystals in a Penning trap. Enabled by precision closed-loop piezo-actuated positioners integrated into the confined space of a superconducting magnet's bore, the system allows tuning of the angle-of-incidence of Raman laser beams up to <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mi>ODF</mi>\\n </msub>\\n <mo>≈</mo>\\n <msup>\\n <mn>28</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation>$\\\\theta _{\\\\mathrm{ODF}}\\\\approx 28^\\\\circ$</annotation>\\n </semantics></math>, governing the ratio of coherent to incoherent light-matter interaction for fixed optical power. System characterization involves measurements of the induced mean-field spin precession under the application of an optical dipole force in ion crystals cooled below the Doppler limit through electromagnetically induced transparency cooling. These experiments show approximately a <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>×</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\times 2$</annotation>\\n </semantics></math> variation in the coherent to incoherent interaction ratio with changing <span></span><math>\\n <semantics>\\n <msub>\\n <mi>θ</mi>\\n <mtext>ODF</mtext>\\n </msub>\\n <annotation>$\\\\theta _{\\\\text{ODF}}$</annotation>\\n </semantics></math>, consistent with theoretical predictions. The system stability is characterized over 6000 s, resulting in a drift rate of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>.</mo>\\n <msup>\\n <mn>002</mn>\\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n <annotation>$0.{002}^{\\\\circ}$</annotation>\\n </semantics></math> h<sup>–1</sup>. These technical developments will be crucial in future quantum simulations and sensing applications.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子模拟的实验实施必须在控制场诱导的退相干与量子系统的可控性之间取得平衡。在原子系统中,相干相互作用强度与受激发射诱发的退相干的比例通常由硬件限制决定,从而限制了探索不同工作状态所需的灵活性。本文介绍了一种光学机械系统,用于原位调节潘宁陷阱中二维离子晶体的相干自旋运动和自旋-自旋相互作用强度。该系统由集成在超导磁体内孔密闭空间中的精密闭环压电定位器驱动,可以将拉曼激光束的入射角调谐到θ ODF ≈ 28 ∘ $\theta _{\mathrm{ODF}}\approx 28^\circ$,从而控制固定光功率下相干与非相干光物质相互作用的比率。系统特征描述包括在通过电磁诱导透明冷却冷却到多普勒极限以下的离子晶体中施加光偶极子力的情况下测量诱导均场自旋前驱。这些实验表明,随着θ ODF $\theta _{\text{ODF}}$的变化,相干与非相干相互作用比大约会发生×2 $\times 2$的变化,这与理论预测是一致的。在 6000 秒的时间内,系统的稳定性表现为漂移率为 0 . 002 ∘ $0.{002}^{\circ}$ h-1。这些技术发展对未来的量子模拟和传感应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ-Tunable Spin–Spin Interactions in a Penning Trap with In-Bore Optomechanics

In Situ-Tunable Spin–Spin Interactions in a Penning Trap with In-Bore Optomechanics

Experimental implementations of quantum simulation must balance control-field-induced decoherence with the controllability of the quantum system. The ratio of coherent interaction strength to decoherence induced by stimulated emission in atomic systems is typically determined by hardware constraints, limiting the flexibility needed to explore different operating regimes. Here, an optomechanical system is presented for in situ tuning of the coherent spin-motion and spin-spin interaction strength in 2D ion crystals in a Penning trap. Enabled by precision closed-loop piezo-actuated positioners integrated into the confined space of a superconducting magnet's bore, the system allows tuning of the angle-of-incidence of Raman laser beams up to θ ODF 28 $\theta _{\mathrm{ODF}}\approx 28^\circ$ , governing the ratio of coherent to incoherent light-matter interaction for fixed optical power. System characterization involves measurements of the induced mean-field spin precession under the application of an optical dipole force in ion crystals cooled below the Doppler limit through electromagnetically induced transparency cooling. These experiments show approximately a × 2 $\times 2$ variation in the coherent to incoherent interaction ratio with changing θ ODF $\theta _{\text{ODF}}$ , consistent with theoretical predictions. The system stability is characterized over 6000 s, resulting in a drift rate of 0 . 002 $0.{002}^{\circ}$ h–1. These technical developments will be crucial in future quantum simulations and sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信