Petteri Harjulehto, Peter Hästö, Artur Słabuszewski
{"title":"无界域上广义奥利兹空间谐波分析的修订条件","authors":"Petteri Harjulehto, Peter Hästö, Artur Słabuszewski","doi":"10.1002/mana.202300416","DOIUrl":null,"url":null,"abstract":"<p>Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math>-functions. It featured prominently in the monograph <i>Orlicz Spaces and Generalized Orlicz Spaces</i>\n[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300416","citationCount":"0","resultStr":"{\"title\":\"A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains\",\"authors\":\"Petteri Harjulehto, Peter Hästö, Artur Słabuszewski\",\"doi\":\"10.1002/mana.202300416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math>-functions. It featured prominently in the monograph <i>Orlicz Spaces and Generalized Orlicz Spaces</i>\\n[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
过去十年间,人们一直在研究广义奥利兹空间中的谐波分析条件。其中一种方法涉及所谓弱 Φ $Phi$ 函数的广义逆。它在专著《奥利茨空间与广义奥利茨空间》[P. Harjulehto and P. P. Orlicz Spaces and Generalized Orlicz Spaces]中占有重要地位。Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]。虽然总体上是成功的,但专著中衰变条件 (A2) 的反函数表述包含一个缺陷,我们在本说明中对此进行了解释和修正。我们还提出了一些与条件相关的新结果,包括光滑函数密度的更一般结果。
A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains
Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak -functions. It featured prominently in the monograph Orlicz Spaces and Generalized Orlicz Spaces
[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.