无界域上广义奥利兹空间谐波分析的修订条件

Pub Date : 2024-06-04 DOI:10.1002/mana.202300416
Petteri Harjulehto, Peter Hästö, Artur Słabuszewski
{"title":"无界域上广义奥利兹空间谐波分析的修订条件","authors":"Petteri Harjulehto,&nbsp;Peter Hästö,&nbsp;Artur Słabuszewski","doi":"10.1002/mana.202300416","DOIUrl":null,"url":null,"abstract":"<p>Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math>-functions. It featured prominently in the monograph <i>Orlicz Spaces and Generalized Orlicz Spaces</i>\n[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300416","citationCount":"0","resultStr":"{\"title\":\"A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains\",\"authors\":\"Petteri Harjulehto,&nbsp;Peter Hästö,&nbsp;Artur Słabuszewski\",\"doi\":\"10.1002/mana.202300416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math>-functions. It featured prominently in the monograph <i>Orlicz Spaces and Generalized Orlicz Spaces</i>\\n[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去十年间,人们一直在研究广义奥利兹空间中的谐波分析条件。其中一种方法涉及所谓弱 Φ $Phi$ 函数的广义逆。它在专著《奥利茨空间与广义奥利茨空间》[P. Harjulehto and P. P. Orlicz Spaces and Generalized Orlicz Spaces]中占有重要地位。Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]。虽然总体上是成功的,但专著中衰变条件 (A2) 的反函数表述包含一个缺陷,我们在本说明中对此进行了解释和修正。我们还提出了一些与条件相关的新结果,包括光滑函数密度的更一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains

Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak Φ $\Phi$ -functions. It featured prominently in the monograph Orlicz Spaces and Generalized Orlicz Spaces [P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信