在固体和液体培养基中利用 MALDI-TOF MS 进行脓肿分枝杆菌亚种鉴定的机器学习贡献

IF 5.7 2区 生物学
Alexandre Godmer, Lise Bigey, Quentin Giai-Gianetto, Gautier Pierrat, Noshine Mohammad, Faiza Mougari, Renaud Piarroux, Nicolas Veziris, Alexandra Aubry
{"title":"在固体和液体培养基中利用 MALDI-TOF MS 进行脓肿分枝杆菌亚种鉴定的机器学习贡献","authors":"Alexandre Godmer,&nbsp;Lise Bigey,&nbsp;Quentin Giai-Gianetto,&nbsp;Gautier Pierrat,&nbsp;Noshine Mohammad,&nbsp;Faiza Mougari,&nbsp;Renaud Piarroux,&nbsp;Nicolas Veziris,&nbsp;Alexandra Aubry","doi":"10.1111/1751-7915.14545","DOIUrl":null,"url":null,"abstract":"<p><i>Mycobacterium abscessus</i> (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (<i>M. abscessus</i>, <i>M. bolletii</i> and <i>M. massiliense</i>) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished <i>M. massiliense</i> from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14545","citationCount":"0","resultStr":"{\"title\":\"Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media\",\"authors\":\"Alexandre Godmer,&nbsp;Lise Bigey,&nbsp;Quentin Giai-Gianetto,&nbsp;Gautier Pierrat,&nbsp;Noshine Mohammad,&nbsp;Faiza Mougari,&nbsp;Renaud Piarroux,&nbsp;Nicolas Veziris,&nbsp;Alexandra Aubry\",\"doi\":\"10.1111/1751-7915.14545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Mycobacterium abscessus</i> (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (<i>M. abscessus</i>, <i>M. bolletii</i> and <i>M. massiliense</i>) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished <i>M. massiliense</i> from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14545\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14545\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14545","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脓肿分枝杆菌(MABS)对大环内酯类药物的敏感性存在亚种差异。因此,识别 MABS 的亚种(M. abscessus、M. bolletii 和 M. massiliense)是指导治疗决策的临床必需。我们的目的是评估基于机器学习(ML)的分类器与基质辅助激光解吸/电离飞行时间(MALDI-TOF)质谱联用鉴定 MABS 亚种的潜力。利用 40 个已确认的 MABS 菌株创建了两个光谱数据库。光谱是通过 MALDI-TOF MS 从在固体(哥伦比亚血液琼脂,CBA)或液体(MGIT®)培养基上培养 1 到 13 天的菌株中获得的。每个数据库都分为一个数据集和一个数据集,前者用于基于 ML 的管道开发,后者用于评估性能。开发了一个内部程序来识别每个亚种特有的鉴别峰。对于在 CBA 上生长的菌株,基于峰值的方法成功地将 Massiliense 真菌与其他亚种区分开来。ML 方法在 CBA 上鉴定亚种的准确率达到 100%,而在 MGIT® 上的准确率仅为 77.5%。这项研究验证了 ML(特别是随机森林算法)在通过 MALDI-TOF MS 鉴别 MABS 亚种方面的实用性。然而,在分枝杆菌学实验室中广泛使用的 MGIT® 培养基上进行鉴定尚不可靠,因此应优先进行开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media

Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media

Mycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M. bolletii and M. massiliense) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished M. massiliense from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信