电子量子模拟器中骰子晶格的实现与特征描述

Camillo Tassi, Dario Bercioux
{"title":"电子量子模拟器中骰子晶格的实现与特征描述","authors":"Camillo Tassi,&nbsp;Dario Bercioux","doi":"10.1002/apxr.202400038","DOIUrl":null,"url":null,"abstract":"<p>Materials featuring touching points, localized states, and flat bands are of great interest in condensed matter and artificial systems due to their implications in topology, quantum geometry, superconductivity, and interactions. In this theoretical study, the experimental realization of the dice lattice with adjustable parameters is proposed by arranging carbon monoxide molecules on a two-dimensional (2D) electron system at a (111) copper surface. First, a theoretical framework is developed to obtain the spectral properties within a nearly free electron approximation and then compare them with tight-binding calculations. This investigation reveals that the high mobility of Shockley state electrons enables an accurate theoretical description of the artificial lattice using a next-nearest-neighbor tight-binding model, resulting in the emergence of a touching point, a quasi-flat band, and localized lattice site behavior in the local density of states. Additionally, theoretical results for a long-wavelength low-energy model that accounts for next-nearest-neighbor hopping terms are presented. Furthermore, the model's behavior under an external magnetic field is theoretically examined by employing Peierl's substitution, a commonly used technique in theoretical physics to incorporate magnetic fields into lattice models. The theoretical findings suggest that, owing to the exceptional electron mobility, the highly degenerate eigenenergy associated with the Aharonov-Bohm caging mechanism may not manifest in the proposed experiment.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400038","citationCount":"0","resultStr":"{\"title\":\"Implementation and Characterization of the Dice Lattice in the Electron Quantum Simulator\",\"authors\":\"Camillo Tassi,&nbsp;Dario Bercioux\",\"doi\":\"10.1002/apxr.202400038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials featuring touching points, localized states, and flat bands are of great interest in condensed matter and artificial systems due to their implications in topology, quantum geometry, superconductivity, and interactions. In this theoretical study, the experimental realization of the dice lattice with adjustable parameters is proposed by arranging carbon monoxide molecules on a two-dimensional (2D) electron system at a (111) copper surface. First, a theoretical framework is developed to obtain the spectral properties within a nearly free electron approximation and then compare them with tight-binding calculations. This investigation reveals that the high mobility of Shockley state electrons enables an accurate theoretical description of the artificial lattice using a next-nearest-neighbor tight-binding model, resulting in the emergence of a touching point, a quasi-flat band, and localized lattice site behavior in the local density of states. Additionally, theoretical results for a long-wavelength low-energy model that accounts for next-nearest-neighbor hopping terms are presented. Furthermore, the model's behavior under an external magnetic field is theoretically examined by employing Peierl's substitution, a commonly used technique in theoretical physics to incorporate magnetic fields into lattice models. The theoretical findings suggest that, owing to the exceptional electron mobility, the highly degenerate eigenenergy associated with the Aharonov-Bohm caging mechanism may not manifest in the proposed experiment.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"3 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有接触点、局部态和平带特征的材料因其在拓扑学、量子几何学、超导性和相互作用方面的意义而在凝聚态物质和人工系统中备受关注。在这项理论研究中,通过在 (111) 铜表面的二维(2D)电子系统上排列一氧化碳分子,提出了具有可调参数的骰子晶格的实验实现方法。首先,建立了一个理论框架,在近似自由电子近似条件下获得光谱特性,然后将其与紧密结合计算进行比较。这项研究揭示了肖克利态电子的高迁移率使得使用近邻紧结合模型对人工晶格进行精确的理论描述成为可能,从而在局部态密度中出现了触点、准扁平带和局部晶格位点行为。此外,还介绍了考虑了近邻跳变项的长波长低能模型的理论结果。此外,理论物理中常用的将磁场纳入晶格模型的技术--Peierl's 置换法,从理论上检验了该模型在外加磁场下的行为。理论研究结果表明,由于电子迁移率极高,与阿哈诺夫-玻姆笼型机制相关的高退化特征能可能不会在拟议的实验中体现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implementation and Characterization of the Dice Lattice in the Electron Quantum Simulator

Implementation and Characterization of the Dice Lattice in the Electron Quantum Simulator

Materials featuring touching points, localized states, and flat bands are of great interest in condensed matter and artificial systems due to their implications in topology, quantum geometry, superconductivity, and interactions. In this theoretical study, the experimental realization of the dice lattice with adjustable parameters is proposed by arranging carbon monoxide molecules on a two-dimensional (2D) electron system at a (111) copper surface. First, a theoretical framework is developed to obtain the spectral properties within a nearly free electron approximation and then compare them with tight-binding calculations. This investigation reveals that the high mobility of Shockley state electrons enables an accurate theoretical description of the artificial lattice using a next-nearest-neighbor tight-binding model, resulting in the emergence of a touching point, a quasi-flat band, and localized lattice site behavior in the local density of states. Additionally, theoretical results for a long-wavelength low-energy model that accounts for next-nearest-neighbor hopping terms are presented. Furthermore, the model's behavior under an external magnetic field is theoretically examined by employing Peierl's substitution, a commonly used technique in theoretical physics to incorporate magnetic fields into lattice models. The theoretical findings suggest that, owing to the exceptional electron mobility, the highly degenerate eigenenergy associated with the Aharonov-Bohm caging mechanism may not manifest in the proposed experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信