{"title":"基于不平衡数据成本敏感意识生成对抗网络的合成孔径雷达自动目标识别技术","authors":"Jikai Qin, Zheng Liu, Lei Ran, Rong Xie","doi":"10.1049/rsn2.12583","DOIUrl":null,"url":null,"abstract":"<p>In military contexts, synthetic aperture radar (SAR) automatic target recognition (ATR) models frequently encounter the challenge of imbalanced data, resulting in a noticeable degradation in the recognition performance. Therefore, the authors propose a cost-sensitive awareness generative adversarial network (CAGAN) model, aiming to improve the robustness of ATR models under imbalanced data. Firstly, the authors introduce a convolutional neural network (DCNN) to extract features. Then, the synthetic minority over-sampling technique (SMOTE) is applied to achieve feature-level balancing for the minority category. Finally, a CAGAN model is designed to perform the final classification task. In this process, the GAN-based adversarial training mechanism enriches the diversity of training samples, making the ATR model more comprehensive in understanding different categories. In addition, the cost matrix increases the penalty for misclassification results and further improves the classification accuracy. Simultaneously, the cost-sensitive awareness can accurately adjust the cost matrix through training data, thus reducing dependence on expert knowledge and improving the generalisation performance of the ATR model. This model is an end-to-end ATR scheme, which has been experimentally validated on the MSTAR and OpenSARship datasets. Compared to other methods, the proposed method exhibits strong robustness in dealing with various imbalanced scenarios and significant generalisation capability across different datasets.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 9","pages":"1391-1408"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12583","citationCount":"0","resultStr":"{\"title\":\"Synthetic aperture radar automatic target recognition based on cost-sensitive awareness generative adversarial network for imbalanced data\",\"authors\":\"Jikai Qin, Zheng Liu, Lei Ran, Rong Xie\",\"doi\":\"10.1049/rsn2.12583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In military contexts, synthetic aperture radar (SAR) automatic target recognition (ATR) models frequently encounter the challenge of imbalanced data, resulting in a noticeable degradation in the recognition performance. Therefore, the authors propose a cost-sensitive awareness generative adversarial network (CAGAN) model, aiming to improve the robustness of ATR models under imbalanced data. Firstly, the authors introduce a convolutional neural network (DCNN) to extract features. Then, the synthetic minority over-sampling technique (SMOTE) is applied to achieve feature-level balancing for the minority category. Finally, a CAGAN model is designed to perform the final classification task. In this process, the GAN-based adversarial training mechanism enriches the diversity of training samples, making the ATR model more comprehensive in understanding different categories. In addition, the cost matrix increases the penalty for misclassification results and further improves the classification accuracy. Simultaneously, the cost-sensitive awareness can accurately adjust the cost matrix through training data, thus reducing dependence on expert knowledge and improving the generalisation performance of the ATR model. This model is an end-to-end ATR scheme, which has been experimentally validated on the MSTAR and OpenSARship datasets. Compared to other methods, the proposed method exhibits strong robustness in dealing with various imbalanced scenarios and significant generalisation capability across different datasets.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 9\",\"pages\":\"1391-1408\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12583\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12583","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Synthetic aperture radar automatic target recognition based on cost-sensitive awareness generative adversarial network for imbalanced data
In military contexts, synthetic aperture radar (SAR) automatic target recognition (ATR) models frequently encounter the challenge of imbalanced data, resulting in a noticeable degradation in the recognition performance. Therefore, the authors propose a cost-sensitive awareness generative adversarial network (CAGAN) model, aiming to improve the robustness of ATR models under imbalanced data. Firstly, the authors introduce a convolutional neural network (DCNN) to extract features. Then, the synthetic minority over-sampling technique (SMOTE) is applied to achieve feature-level balancing for the minority category. Finally, a CAGAN model is designed to perform the final classification task. In this process, the GAN-based adversarial training mechanism enriches the diversity of training samples, making the ATR model more comprehensive in understanding different categories. In addition, the cost matrix increases the penalty for misclassification results and further improves the classification accuracy. Simultaneously, the cost-sensitive awareness can accurately adjust the cost matrix through training data, thus reducing dependence on expert knowledge and improving the generalisation performance of the ATR model. This model is an end-to-end ATR scheme, which has been experimentally validated on the MSTAR and OpenSARship datasets. Compared to other methods, the proposed method exhibits strong robustness in dealing with various imbalanced scenarios and significant generalisation capability across different datasets.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.