Haeng Lim Lee, Selim Ashoor, Zhuang Yao, Yu-Sin Jang
{"title":"不同培养条件下乙酰丁酸梭菌 ATCC 824(pCD07239)的产酸期代谢特征","authors":"Haeng Lim Lee, Selim Ashoor, Zhuang Yao, Yu-Sin Jang","doi":"10.1186/s13765-024-00936-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the metabolic behavior of the engineered <i>Clostridium acetobutylicum</i> ATCC 824 (pCD07239) strain during the acidogenic phase under varying glucose concentrations and pH conditions. Unlike the wild-type <i>C. acetobutylicum</i> ATCC 824, the engineered strain exhibited negligible butyrate production and simultaneous butanol production during the acidogenic phase under limited glucose condition of 25 g/L. Specifically, batch fermentations of the engineered strain with 25 g/L glucose at a pH of around 5.0 (initially uncontrolled) demonstrated butanol production of 2.99 g/L, while butyrate remained below 0.30 g/L. Separately, in batch fermentations at pH 6.0 with 90 g/L glucose, acetate production nearly doubled compared to fermentations at pH 5.0 with the same glucose concentrations, reaching a maximum concentration of 11.43 g/L, while butyrate production remained relatively low at 4.04 g/L. Under these pH 6.0 and 90 g/L glucose conditions, butanol production reached 9.86 g/L. These findings indicate that <i>C. acetobutylicum</i> ATCC 824 (pCD07239) maintained low butyrate production, even under conditions favoring acidogenesis, and consistently produced butanol. Additionally, the negligible production of acetone at pH 6.0 further indicates that the traditional phase transition was not prominent, suggesting altered regulation mechanisms in the engineered strain. These findings highlight <i>C. acetobutylicum</i> ATCC 824 (pCD07239) strain’s unique metabolic profile and its potential for efficient biobutanol production under diverse conditions.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00936-0","citationCount":"0","resultStr":"{\"title\":\"Characterization of acidogenic phase metabolism in Clostridium acetobutylicum ATCC 824 (pCD07239) under different culture conditions\",\"authors\":\"Haeng Lim Lee, Selim Ashoor, Zhuang Yao, Yu-Sin Jang\",\"doi\":\"10.1186/s13765-024-00936-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated the metabolic behavior of the engineered <i>Clostridium acetobutylicum</i> ATCC 824 (pCD07239) strain during the acidogenic phase under varying glucose concentrations and pH conditions. Unlike the wild-type <i>C. acetobutylicum</i> ATCC 824, the engineered strain exhibited negligible butyrate production and simultaneous butanol production during the acidogenic phase under limited glucose condition of 25 g/L. Specifically, batch fermentations of the engineered strain with 25 g/L glucose at a pH of around 5.0 (initially uncontrolled) demonstrated butanol production of 2.99 g/L, while butyrate remained below 0.30 g/L. Separately, in batch fermentations at pH 6.0 with 90 g/L glucose, acetate production nearly doubled compared to fermentations at pH 5.0 with the same glucose concentrations, reaching a maximum concentration of 11.43 g/L, while butyrate production remained relatively low at 4.04 g/L. Under these pH 6.0 and 90 g/L glucose conditions, butanol production reached 9.86 g/L. These findings indicate that <i>C. acetobutylicum</i> ATCC 824 (pCD07239) maintained low butyrate production, even under conditions favoring acidogenesis, and consistently produced butanol. Additionally, the negligible production of acetone at pH 6.0 further indicates that the traditional phase transition was not prominent, suggesting altered regulation mechanisms in the engineered strain. These findings highlight <i>C. acetobutylicum</i> ATCC 824 (pCD07239) strain’s unique metabolic profile and its potential for efficient biobutanol production under diverse conditions.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00936-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-024-00936-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00936-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characterization of acidogenic phase metabolism in Clostridium acetobutylicum ATCC 824 (pCD07239) under different culture conditions
In this study, we investigated the metabolic behavior of the engineered Clostridium acetobutylicum ATCC 824 (pCD07239) strain during the acidogenic phase under varying glucose concentrations and pH conditions. Unlike the wild-type C. acetobutylicum ATCC 824, the engineered strain exhibited negligible butyrate production and simultaneous butanol production during the acidogenic phase under limited glucose condition of 25 g/L. Specifically, batch fermentations of the engineered strain with 25 g/L glucose at a pH of around 5.0 (initially uncontrolled) demonstrated butanol production of 2.99 g/L, while butyrate remained below 0.30 g/L. Separately, in batch fermentations at pH 6.0 with 90 g/L glucose, acetate production nearly doubled compared to fermentations at pH 5.0 with the same glucose concentrations, reaching a maximum concentration of 11.43 g/L, while butyrate production remained relatively low at 4.04 g/L. Under these pH 6.0 and 90 g/L glucose conditions, butanol production reached 9.86 g/L. These findings indicate that C. acetobutylicum ATCC 824 (pCD07239) maintained low butyrate production, even under conditions favoring acidogenesis, and consistently produced butanol. Additionally, the negligible production of acetone at pH 6.0 further indicates that the traditional phase transition was not prominent, suggesting altered regulation mechanisms in the engineered strain. These findings highlight C. acetobutylicum ATCC 824 (pCD07239) strain’s unique metabolic profile and its potential for efficient biobutanol production under diverse conditions.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.