{"title":"平行板静电力下微谐振器扰动纵向振动的动力学行为","authors":"Sengen Hu, Liangqiang Zhou","doi":"10.1016/j.cnsns.2024.108341","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic model for perturbative longitudinal vibration of microresonators subjected to the parallel-plate electrostatic force, which can be converted into a cubic oscillator with nonlinear polynomials, is established in this manuscript. The orbits and global dynamical behaviors of the cubic oscillator at full state are studied both analytically and numerically. The expressions of homoclinic orbits and subharmonic orbits are obtained analytically by solving the Hamilton system. The scenarios of phase portraits and equilibria are given. With the Melnikov method, the critical value of chaos arising from homoclinic intersections is derived analytically. The investigation yields intriguing dynamical phenomena, including the controllable frequencies that regulate the system without inducing chaos. The conditions for the occurrence of subharmonic bifurcations of integer order are presented with the subharmonic Melnikov method. Besides, the results indicate that the system does not undergo fractional order subharmonic bifurcation and it can reach a chaotic state through a finite number of integer order subharmonic bifurcations. On the basis of theoretical analysis, some numerical simulations including time histories, phase portraits, bifurcation diagrams, Poincaré cross-sections, Lyapunov exponential spectrums and basins of attractor are given, which are consistent with theoretical results.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005264/pdfft?md5=6f80ec23ddf4f3580ecc87bdc48abd82&pid=1-s2.0-S1007570424005264-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamical behaviors in perturbative longitudinal vibration of microresonators under the parallel-plate electrostatic force\",\"authors\":\"Sengen Hu, Liangqiang Zhou\",\"doi\":\"10.1016/j.cnsns.2024.108341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic model for perturbative longitudinal vibration of microresonators subjected to the parallel-plate electrostatic force, which can be converted into a cubic oscillator with nonlinear polynomials, is established in this manuscript. The orbits and global dynamical behaviors of the cubic oscillator at full state are studied both analytically and numerically. The expressions of homoclinic orbits and subharmonic orbits are obtained analytically by solving the Hamilton system. The scenarios of phase portraits and equilibria are given. With the Melnikov method, the critical value of chaos arising from homoclinic intersections is derived analytically. The investigation yields intriguing dynamical phenomena, including the controllable frequencies that regulate the system without inducing chaos. The conditions for the occurrence of subharmonic bifurcations of integer order are presented with the subharmonic Melnikov method. Besides, the results indicate that the system does not undergo fractional order subharmonic bifurcation and it can reach a chaotic state through a finite number of integer order subharmonic bifurcations. On the basis of theoretical analysis, some numerical simulations including time histories, phase portraits, bifurcation diagrams, Poincaré cross-sections, Lyapunov exponential spectrums and basins of attractor are given, which are consistent with theoretical results.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005264/pdfft?md5=6f80ec23ddf4f3580ecc87bdc48abd82&pid=1-s2.0-S1007570424005264-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005264\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamical behaviors in perturbative longitudinal vibration of microresonators under the parallel-plate electrostatic force
The dynamic model for perturbative longitudinal vibration of microresonators subjected to the parallel-plate electrostatic force, which can be converted into a cubic oscillator with nonlinear polynomials, is established in this manuscript. The orbits and global dynamical behaviors of the cubic oscillator at full state are studied both analytically and numerically. The expressions of homoclinic orbits and subharmonic orbits are obtained analytically by solving the Hamilton system. The scenarios of phase portraits and equilibria are given. With the Melnikov method, the critical value of chaos arising from homoclinic intersections is derived analytically. The investigation yields intriguing dynamical phenomena, including the controllable frequencies that regulate the system without inducing chaos. The conditions for the occurrence of subharmonic bifurcations of integer order are presented with the subharmonic Melnikov method. Besides, the results indicate that the system does not undergo fractional order subharmonic bifurcation and it can reach a chaotic state through a finite number of integer order subharmonic bifurcations. On the basis of theoretical analysis, some numerical simulations including time histories, phase portraits, bifurcation diagrams, Poincaré cross-sections, Lyapunov exponential spectrums and basins of attractor are given, which are consistent with theoretical results.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.