{"title":"用于流动方程低维参数化的卷积自编码器、聚类和 POD","authors":"Jan Heiland , Yongho Kim","doi":"10.1016/j.camwa.2024.08.032","DOIUrl":null,"url":null,"abstract":"<div><p>Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0898122124003997/pdfft?md5=0435f6e1701db585bc0ec9dc668ce568&pid=1-s2.0-S0898122124003997-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations\",\"authors\":\"Jan Heiland , Yongho Kim\",\"doi\":\"10.1016/j.camwa.2024.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003997/pdfft?md5=0435f6e1701db585bc0ec9dc668ce568&pid=1-s2.0-S0898122124003997-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003997\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003997","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
大规模动态系统的模拟需要昂贵的计算和大量的存储。高维状态的低维表示法,例如由适当正交分解法(POD)衍生出的低阶模型,以降低模型复杂度来换取精度,是减轻计算负担的一种解决方案。然而,对于真正的低维状态参数化,例如控制器设计所需的低维状态参数化,POD 等线性方法已达到其自然极限,因此非线性方法将成为首选。在这项工作中,我们提出了一种由非线性编码器和仿射线性解码器组成的卷积自动编码器(CAE),并考虑了一种深度聚类模型,在该模型中,CAE 与 k-means 聚类相结合,以提高编码性能。所提出的方法集与标准 POD 方法在三种情况下进行了比较:用不可压缩纳维-斯托克斯方程建模的单缸和双缸涡流,以及用粘性布尔格斯方程描述的流动设置。
Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations
Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).