三维修正 Fisher-Kolmogorov-Petrovsky-Piskunov 方程的正性保持和无条件稳定数值方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Seungyoon Kang, Soobin Kwak, Youngjin Hwang, Junseok Kim
{"title":"三维修正 Fisher-Kolmogorov-Petrovsky-Piskunov 方程的正性保持和无条件稳定数值方案","authors":"Seungyoon Kang,&nbsp;Soobin Kwak,&nbsp;Youngjin Hwang,&nbsp;Junseok Kim","doi":"10.1016/j.cam.2024.116273","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a numerical approach for the practical solution of the modified Fisher–Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion term and nonlinear term is based on the operator splitting method and interpolation method, respectively. The analytic proof of the discrete maximum principle and positivity preserving for the numerical algorithm is demonstrated. Numerical solution calculated using the proposed method remains stable without blowing up, which implies that the proposed method is unconditionally stable. Numerical studies show that the proposed method is second-order convergence in space and first-order convergence in time. The performance and applicability of the proposed scheme are studied through various computational tests that present the effects of model parameters and evolution dynamics.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity preserving and unconditionally stable numerical scheme for the three-dimensional modified Fisher–Kolmogorov–Petrovsky–Piskunov equation\",\"authors\":\"Seungyoon Kang,&nbsp;Soobin Kwak,&nbsp;Youngjin Hwang,&nbsp;Junseok Kim\",\"doi\":\"10.1016/j.cam.2024.116273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a numerical approach for the practical solution of the modified Fisher–Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion term and nonlinear term is based on the operator splitting method and interpolation method, respectively. The analytic proof of the discrete maximum principle and positivity preserving for the numerical algorithm is demonstrated. Numerical solution calculated using the proposed method remains stable without blowing up, which implies that the proposed method is unconditionally stable. Numerical studies show that the proposed method is second-order convergence in space and first-order convergence in time. The performance and applicability of the proposed scheme are studied through various computational tests that present the effects of model parameters and evolution dynamics.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种实际求解描述种群动态的修正 Fisher-Kolmogorov-Petrovsky-Piskunov 方程的数值方法。扩散项和非线性项分别基于算子分裂法和插值法。演示了离散最大原则的解析证明和数值算法的正保性。使用所提方法计算的数值解保持稳定,没有炸裂现象,这意味着所提方法是无条件稳定的。数值研究表明,所提方法在空间上具有二阶收敛性,在时间上具有一阶收敛性。通过对模型参数和演变动态影响的各种计算测试,研究了所提方案的性能和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity preserving and unconditionally stable numerical scheme for the three-dimensional modified Fisher–Kolmogorov–Petrovsky–Piskunov equation

This paper introduces a numerical approach for the practical solution of the modified Fisher–Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion term and nonlinear term is based on the operator splitting method and interpolation method, respectively. The analytic proof of the discrete maximum principle and positivity preserving for the numerical algorithm is demonstrated. Numerical solution calculated using the proposed method remains stable without blowing up, which implies that the proposed method is unconditionally stable. Numerical studies show that the proposed method is second-order convergence in space and first-order convergence in time. The performance and applicability of the proposed scheme are studied through various computational tests that present the effects of model parameters and evolution dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信