{"title":"基于深度强化学习的燃料电池公交车能源管理策略,集成了未来道路信息和车厢舒适度控制功能","authors":"","doi":"10.1016/j.enconman.2024.119032","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.119032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424009737\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009737","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control
Conventional energy management strategy (EMS) for fuel cell vehicles (FCVs) aims to optimize powertrain energy consumption while ignoring the air conditioning regulation, whereby the overall energy efficiency cannot be optimal. To enhance the cabin-powertrain holistic energy utilization without compromising energy storage system degradation and passenger temperature comfort, this paper proposes a novel energy management paradigm. The comprehensive control of cabin comfort and fuel cell/battery durability is achieved by comprehensively utilizing onboard sensors and vehicle-cloud infrastructure. Specifically, the vehicle energy- and thermal-coupled control problem is formulated by considering energy consumption, component ageing, and cabin’s dynamic thermal model. In addition to regular state space in energy management problems, future road information and environmental temperature are innovatively integrated into the energy management framework. A twin delayed deep deterministic policy gradient algorithm is used to solve the problem to enhance the overall energy efficiency. Simulation results indicate that, compared with rule-based EMSs, the proposed strategy achieves cabin comfort while extending the battery life by at least 3.79 % and reducing the overall vehicle operating cost by at least 2.71 %.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.