GL(n) 上的贝塞尔函数,I

IF 1.7 2区 数学 Q1 MATHEMATICS
Jack Buttcane
{"title":"GL(n) 上的贝塞尔函数,I","authors":"Jack Buttcane","doi":"10.1016/j.jfa.2024.110657","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of the Kuznetsov trace formula, we outline the theory of the Bessel functions on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> as a series of conjectures designed as a blueprint for the construction of Kuznetsov-type formulas with given ramification at infinity. We are able to prove one of the conjectures at full generality on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and most of the conjectures in the particular case of the long Weyl element; as with previous papers, we give some unconditional results on Archimedean Whittaker functions, now on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with arbitrary weight. We expect the heuristics here to apply at the level of real reductive groups. A forthcoming paper will address the initial conjectures up to Mellin-Barnes integral representations in the case of <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> Bessel functions.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bessel functions on GL(n), I\",\"authors\":\"Jack Buttcane\",\"doi\":\"10.1016/j.jfa.2024.110657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of the Kuznetsov trace formula, we outline the theory of the Bessel functions on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> as a series of conjectures designed as a blueprint for the construction of Kuznetsov-type formulas with given ramification at infinity. We are able to prove one of the conjectures at full generality on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and most of the conjectures in the particular case of the long Weyl element; as with previous papers, we give some unconditional results on Archimedean Whittaker functions, now on <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with arbitrary weight. We expect the heuristics here to apply at the level of real reductive groups. A forthcoming paper will address the initial conjectures up to Mellin-Barnes integral representations in the case of <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> Bessel functions.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003458\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003458","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在库兹涅佐夫迹公式的背景下,我们将 GL(n) 上的贝塞尔函数理论概述为一系列猜想,这些猜想旨在为构建具有给定无穷斜率的库兹涅佐夫型公式提供蓝图。我们能够在 GL(n) 上完全证明其中一个猜想,并在长韦尔元素的特殊情况下证明大部分猜想;与之前的论文一样,我们给出了关于阿基米德惠特克函数的一些无条件结果,现在是在具有任意权重的 GL(n) 上。我们希望这里的启发式方法适用于实数还原群。即将发表的论文将讨论 GL(4) 贝塞尔函数情况下直到梅林-巴恩斯积分表征的初步猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bessel functions on GL(n), I

In the context of the Kuznetsov trace formula, we outline the theory of the Bessel functions on GL(n) as a series of conjectures designed as a blueprint for the construction of Kuznetsov-type formulas with given ramification at infinity. We are able to prove one of the conjectures at full generality on GL(n) and most of the conjectures in the particular case of the long Weyl element; as with previous papers, we give some unconditional results on Archimedean Whittaker functions, now on GL(n) with arbitrary weight. We expect the heuristics here to apply at the level of real reductive groups. A forthcoming paper will address the initial conjectures up to Mellin-Barnes integral representations in the case of GL(4) Bessel functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信