{"title":"米替福新通过改变 PI3K/AKT 信号通路诱导精子获能过程中的生殖毒性","authors":"Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Woo-Sung Kwon","doi":"10.1016/j.etap.2024.104565","DOIUrl":null,"url":null,"abstract":"<div><p>Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway\",\"authors\":\"Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Woo-Sung Kwon\",\"doi\":\"10.1016/j.etap.2024.104565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.</p></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924002059\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924002059","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway
Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.