{"title":"有机卤化物在二氧化碳转化为环状碳酸盐过程中的解离对催化活性的作用:实验和计算研究","authors":"","doi":"10.1016/j.jcou.2024.102929","DOIUrl":null,"url":null,"abstract":"<div><p>There is a limited number of systematic CO<sub>2</sub> conversion studies that provide a clear understanding of the effect of the active sites of catalysts. Hence, this work examines the catalytic activity of 24 organic salts consisting of chloride, bromide or iodide anions and imidazolium, ammonium, or phosphonium-based cations, in the synthesis of hexylene and styrene carbonates from CO<sub>2</sub>, resulting in a diverse range of yields. The findings revealed that high yields depend heavily on catalyst solubility in the reaction medium, but solubility alone does not guarantee reaction success. This finding supports the new hypothesis that catalyst dissociation, reliant on solubility, is a critical factor in defining the catalytic activity. A strong correlation was observed between carbonate yields and the dissociation constants of catalysts, calculated using the COSMO-RS method. This suggests that greater dissociation, reflecting weaker cation-anion interactions, facilitates the anion nucleophilic attack on the epoxide. Also, the relationship between calculated dissociation constant and experimental ionic conductivity was successfully validated. This highlights the significance of organic salt dissociation on catalytic performance and validates the use of computational tools to predict key operational parameters, enhancing the understanding and optimization of CO<sub>2</sub> conversion into cyclic carbonates.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002646/pdfft?md5=4d27148912800f265e098846d87f2d25&pid=1-s2.0-S2212982024002646-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dissociation role on the catalytic activity of organic halides in CO2 conversion to cyclic carbonates: Experimental and computational study\",\"authors\":\"\",\"doi\":\"10.1016/j.jcou.2024.102929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a limited number of systematic CO<sub>2</sub> conversion studies that provide a clear understanding of the effect of the active sites of catalysts. Hence, this work examines the catalytic activity of 24 organic salts consisting of chloride, bromide or iodide anions and imidazolium, ammonium, or phosphonium-based cations, in the synthesis of hexylene and styrene carbonates from CO<sub>2</sub>, resulting in a diverse range of yields. The findings revealed that high yields depend heavily on catalyst solubility in the reaction medium, but solubility alone does not guarantee reaction success. This finding supports the new hypothesis that catalyst dissociation, reliant on solubility, is a critical factor in defining the catalytic activity. A strong correlation was observed between carbonate yields and the dissociation constants of catalysts, calculated using the COSMO-RS method. This suggests that greater dissociation, reflecting weaker cation-anion interactions, facilitates the anion nucleophilic attack on the epoxide. Also, the relationship between calculated dissociation constant and experimental ionic conductivity was successfully validated. This highlights the significance of organic salt dissociation on catalytic performance and validates the use of computational tools to predict key operational parameters, enhancing the understanding and optimization of CO<sub>2</sub> conversion into cyclic carbonates.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002646/pdfft?md5=4d27148912800f265e098846d87f2d25&pid=1-s2.0-S2212982024002646-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002646\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002646","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dissociation role on the catalytic activity of organic halides in CO2 conversion to cyclic carbonates: Experimental and computational study
There is a limited number of systematic CO2 conversion studies that provide a clear understanding of the effect of the active sites of catalysts. Hence, this work examines the catalytic activity of 24 organic salts consisting of chloride, bromide or iodide anions and imidazolium, ammonium, or phosphonium-based cations, in the synthesis of hexylene and styrene carbonates from CO2, resulting in a diverse range of yields. The findings revealed that high yields depend heavily on catalyst solubility in the reaction medium, but solubility alone does not guarantee reaction success. This finding supports the new hypothesis that catalyst dissociation, reliant on solubility, is a critical factor in defining the catalytic activity. A strong correlation was observed between carbonate yields and the dissociation constants of catalysts, calculated using the COSMO-RS method. This suggests that greater dissociation, reflecting weaker cation-anion interactions, facilitates the anion nucleophilic attack on the epoxide. Also, the relationship between calculated dissociation constant and experimental ionic conductivity was successfully validated. This highlights the significance of organic salt dissociation on catalytic performance and validates the use of computational tools to predict key operational parameters, enhancing the understanding and optimization of CO2 conversion into cyclic carbonates.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.