具有通量限制的退化趋化系统解的时间行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Marras , S. Vernier-Piro , T. Yokota
{"title":"具有通量限制的退化趋化系统解的时间行为","authors":"M. Marras ,&nbsp;S. Vernier-Piro ,&nbsp;T. Yokota","doi":"10.1016/j.nonrwa.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><p>We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mspace></mspace><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>v</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no flux boundary conditions in a ball <span><math><mrow><mi>B</mi><mo>=</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> and initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>χ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>d</mi><mi>x</mi><mo>.</mo></mrow></math></span> Under suitable conditions on <span><math><mi>α</mi></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> it is shown that the solution blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at a finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and for some <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> it blows up also in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001548/pdfft?md5=6f13fb993e83f3c2deb3af5f4ca4b00b&pid=1-s2.0-S1468121824001548-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Behavior in time of solutions to a degenerate chemotaxis system with flux limitation\",\"authors\":\"M. Marras ,&nbsp;S. Vernier-Piro ,&nbsp;T. Yokota\",\"doi\":\"10.1016/j.nonrwa.2024.104215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mspace></mspace><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>v</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no flux boundary conditions in a ball <span><math><mrow><mi>B</mi><mo>=</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> and initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>χ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>d</mi><mi>x</mi><mo>.</mo></mrow></math></span> Under suitable conditions on <span><math><mi>α</mi></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> it is shown that the solution blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at a finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and for some <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> it blows up also in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001548/pdfft?md5=6f13fb993e83f3c2deb3af5f4ca4b00b&pid=1-s2.0-S1468121824001548-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001548\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001548","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类新的凯勒-西格尔(Keller-Segel)模型,该模型根据化学信号密度提出了细胞密度的有限通量和最佳传输。作为该类模型的原型,我们研究了抛物线-椭圆系统的径向对称解 ut=∇⋅(u∇uu2+|∇u|2)-χkf∇⋅(u∇v(1+|∇v|2)α),x∈Ω,t>;0,0=Δv-μ+u,x∈Ω,t>0,在球 B=Ω⊂RN 中无通量边界条件下,初始条件 u(x,0)=u0(x)>0,χ>0,α>0,kf>0 和 μ=1|Ω|∫Ωu0dx.在α和u0的适当条件下,可以证明解在有限时间Tmax内以L∞-norm形式炸毁,对于某些p>1,它也以Lp-norm形式炸毁。证明主要基于有用的变量变化、比较论证和一些适当的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior in time of solutions to a degenerate chemotaxis system with flux limitation

We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system ut=(uuu2+|u|2)χkf(uv(1+|v|2)α),xΩ,t>0,0=Δvμ+u,xΩ,t>0under no flux boundary conditions in a ball B=ΩRN and initial condition u(x,0)=u0(x)>0,χ>0,α>0,kf>0 and μ=1|Ω|Ωu0dx. Under suitable conditions on α and u0 it is shown that the solution blows up in L-norm at a finite time Tmax and for some p>1 it blows up also in Lp-norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信