{"title":"具有通量限制的退化趋化系统解的时间行为","authors":"M. Marras , S. Vernier-Piro , T. Yokota","doi":"10.1016/j.nonrwa.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><p>We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mspace></mspace><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>v</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no flux boundary conditions in a ball <span><math><mrow><mi>B</mi><mo>=</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> and initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn><mo>,</mo><mi>χ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>d</mi><mi>x</mi><mo>.</mo></mrow></math></span> Under suitable conditions on <span><math><mi>α</mi></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> it is shown that the solution blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at a finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and for some <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span> it blows up also in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001548/pdfft?md5=6f13fb993e83f3c2deb3af5f4ca4b00b&pid=1-s2.0-S1468121824001548-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Behavior in time of solutions to a degenerate chemotaxis system with flux limitation\",\"authors\":\"M. Marras , S. Vernier-Piro , T. Yokota\",\"doi\":\"10.1016/j.nonrwa.2024.104215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mspace></mspace><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>v</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no flux boundary conditions in a ball <span><math><mrow><mi>B</mi><mo>=</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> and initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn><mo>,</mo><mi>χ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>d</mi><mi>x</mi><mo>.</mo></mrow></math></span> Under suitable conditions on <span><math><mi>α</mi></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> it is shown that the solution blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at a finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and for some <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span> it blows up also in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001548/pdfft?md5=6f13fb993e83f3c2deb3af5f4ca4b00b&pid=1-s2.0-S1468121824001548-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001548\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001548","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Behavior in time of solutions to a degenerate chemotaxis system with flux limitation
We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system under no flux boundary conditions in a ball and initial condition and Under suitable conditions on and it is shown that the solution blows up in -norm at a finite time and for some it blows up also in -norm. The proofs are mainly based on an helpful change of variables, on comparison arguments and some suitable estimates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.