半空间软电势和镜面边界条件下玻尔兹曼方程的希尔伯特展开

IF 2.4 2区 数学 Q1 MATHEMATICS
Jing Ouyang , Yong Wang
{"title":"半空间软电势和镜面边界条件下玻尔兹曼方程的希尔伯特展开","authors":"Jing Ouyang ,&nbsp;Yong Wang","doi":"10.1016/j.jde.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. We justify rigorously the validity of the hydrodynamic limit from the Boltzmann equation of soft potentials to the compressible Euler equations by the Hilbert expansion with multi-scales. Specifically, the Boltzmann solutions are expanded into three parts: interior part, viscous boundary layer and Knudsen boundary layer. Due to the weak effect of collision frequency of soft potentials, new difficulty arises when tackling the existence of Knudsen layer solutions with space decay rate, which has been overcome under some constraint conditions and losing velocity weight arguments.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert expansion of Boltzmann equation with soft potentials and specular boundary condition in half-space\",\"authors\":\"Jing Ouyang ,&nbsp;Yong Wang\",\"doi\":\"10.1016/j.jde.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. We justify rigorously the validity of the hydrodynamic limit from the Boltzmann equation of soft potentials to the compressible Euler equations by the Hilbert expansion with multi-scales. Specifically, the Boltzmann solutions are expanded into three parts: interior part, viscous boundary layer and Knudsen boundary layer. Due to the weak effect of collision frequency of soft potentials, new difficulty arises when tackling the existence of Knudsen layer solutions with space decay rate, which has been overcome under some constraint conditions and losing velocity weight arguments.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005734\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005734","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

边界效应在玻尔兹曼理论的流体力学极限研究中发挥着重要作用。我们通过多尺度的希尔伯特展开严格论证了从软势能的玻尔兹曼方程到可压缩欧拉方程的流体力学极限的有效性。具体来说,玻尔兹曼解被扩展为三个部分:内部部分、粘性边界层和克努森边界层。由于软势能碰撞频率的微弱影响,在处理具有空间衰减率的努森层解的存在性时出现了新的困难,在一些约束条件和失去速度权重的论证下克服了这一困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert expansion of Boltzmann equation with soft potentials and specular boundary condition in half-space

Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. We justify rigorously the validity of the hydrodynamic limit from the Boltzmann equation of soft potentials to the compressible Euler equations by the Hilbert expansion with multi-scales. Specifically, the Boltzmann solutions are expanded into three parts: interior part, viscous boundary layer and Knudsen boundary layer. Due to the weak effect of collision frequency of soft potentials, new difficulty arises when tackling the existence of Knudsen layer solutions with space decay rate, which has been overcome under some constraint conditions and losing velocity weight arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信