{"title":"大地流 Lyapunov 指数的刚性","authors":"Nestor Nina Zarate , Sergio Romaña","doi":"10.1016/j.jde.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study rigidity problems between Lyapunov exponents along periodic orbits and geometric structures. More specifically, we prove that for a surface <em>M</em> without focal points, if the value of the Lyapunov exponents is constant over all periodic orbits, then <em>M</em> is the flat 2-torus or a surface of constant negative curvature. We obtain the same result for the case of Anosov geodesic flow for surface, which generalizes C. Butler's result <span><span>[5]</span></span> in dimension two. Using completely different techniques, we also prove an extension of <span><span>[5]</span></span> to the finite volume case, where the value of the Lyapunov exponents along all periodic orbits is constant, being the maximum or minimum possible.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Lyapunov exponents for geodesic flows\",\"authors\":\"Nestor Nina Zarate , Sergio Romaña\",\"doi\":\"10.1016/j.jde.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study rigidity problems between Lyapunov exponents along periodic orbits and geometric structures. More specifically, we prove that for a surface <em>M</em> without focal points, if the value of the Lyapunov exponents is constant over all periodic orbits, then <em>M</em> is the flat 2-torus or a surface of constant negative curvature. We obtain the same result for the case of Anosov geodesic flow for surface, which generalizes C. Butler's result <span><span>[5]</span></span> in dimension two. Using completely different techniques, we also prove an extension of <span><span>[5]</span></span> to the finite volume case, where the value of the Lyapunov exponents along all periodic orbits is constant, being the maximum or minimum possible.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400576X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400576X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了沿周期轨道的 Lyapunov 指数与几何结构之间的刚性问题。更具体地说,我们证明了对于一个没有焦点的曲面 M,如果在所有周期轨道上的 Lyapunov 指数值都是常数,那么 M 就是平坦的 2-Torus 或恒定负曲率曲面。对于曲面的阿诺索夫大地流,我们也得到了同样的结果,这概括了 C. 巴特勒在二维中的结果[5]。利用完全不同的技术,我们还证明了 [5] 在有限体积情况下的扩展,在这种情况下,沿所有周期轨道的 Lyapunov 指数值都是常数,即可能的最大值或最小值。
In this paper, we study rigidity problems between Lyapunov exponents along periodic orbits and geometric structures. More specifically, we prove that for a surface M without focal points, if the value of the Lyapunov exponents is constant over all periodic orbits, then M is the flat 2-torus or a surface of constant negative curvature. We obtain the same result for the case of Anosov geodesic flow for surface, which generalizes C. Butler's result [5] in dimension two. Using completely different techniques, we also prove an extension of [5] to the finite volume case, where the value of the Lyapunov exponents along all periodic orbits is constant, being the maximum or minimum possible.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics