论直线上 Fokas-Lenells 方程的全局好求解性

IF 2.4 2区 数学 Q1 MATHEMATICS
Qiaoyuan Cheng , Engui Fan , Manwai Yuen
{"title":"论直线上 Fokas-Lenells 方程的全局好求解性","authors":"Qiaoyuan Cheng ,&nbsp;Engui Fan ,&nbsp;Manwai Yuen","doi":"10.1016/j.jde.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain the global well-posedness to the Cauchy problem of the Fokas-Lenells (FL) equation on the line without the small-norm assumption on initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a prior estimate of the solution to the FL equation. Based on the local solution and the uniformly prior estimate, we construct a unique global solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to the FL equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the global well-posedness for the Fokas-Lenells equation on the line\",\"authors\":\"Qiaoyuan Cheng ,&nbsp;Engui Fan ,&nbsp;Manwai Yuen\",\"doi\":\"10.1016/j.jde.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain the global well-posedness to the Cauchy problem of the Fokas-Lenells (FL) equation on the line without the small-norm assumption on initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a prior estimate of the solution to the FL equation. Based on the local solution and the uniformly prior estimate, we construct a unique global solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to the FL equation.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005813\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005813","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了线上 Fokas-Lenells (FL) 方程的考奇问题的全局好求性,而无需对初始数据 u0∈H3(R)∩H2,1(R) 作小规范假设。我们的主要技术工具是基于与上述考奇问题相关的黎曼-希尔伯特(RH)问题表示的反散射变换方法。RH 问题的存在性和唯一性通过一般的消失阶式得到证明。通过 Cauchy 积分保护和反射系数表示 RH 问题的解,利用重构公式得到 FL 方程的唯一局部解。此外,特征函数和反射系数相对于初始数据显示为 Lipschitz 连续,这为 FL 方程的解提供了先验估计。基于局部解和均匀先验估计,我们在 H3(R)∩H2,1(R)中构建了 FL 方程的唯一全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the global well-posedness for the Fokas-Lenells equation on the line

We obtain the global well-posedness to the Cauchy problem of the Fokas-Lenells (FL) equation on the line without the small-norm assumption on initial data u0H3(R)H2,1(R). Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a prior estimate of the solution to the FL equation. Based on the local solution and the uniformly prior estimate, we construct a unique global solution in H3(R)H2,1(R) to the FL equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信