具有吸引力库仑势和点相互作用的二维 NLS 基态

IF 2.4 2区 数学 Q1 MATHEMATICS
Filippo Boni , Matteo Gallone
{"title":"具有吸引力库仑势和点相互作用的二维 NLS 基态","authors":"Filippo Boni ,&nbsp;Matteo Gallone","doi":"10.1016/j.jde.2024.08.076","DOIUrl":null,"url":null,"abstract":"<div><p>We study the existence and the properties of ground states at fixed mass for a focusing nonlinear Schrödinger equation in dimension two with a point interaction, an attractive Coulomb potential and a nonlinearity of power type. We prove that for any negative value of the Coulomb charge, for any positive value of the mass and for any <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-subcritical power nonlinearity, such ground states exist and exhibit a logarithmic singularity where the interaction is placed. Moreover, up to multiplication by a phase factor, they are positive, radially symmetric and decreasing. An analogous result is obtained also for minimizers of the action restricted to the Nehari manifold, getting the existence also in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical and supercritical cases.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two dimensional NLS ground states with attractive Coulomb potential and point interaction\",\"authors\":\"Filippo Boni ,&nbsp;Matteo Gallone\",\"doi\":\"10.1016/j.jde.2024.08.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the existence and the properties of ground states at fixed mass for a focusing nonlinear Schrödinger equation in dimension two with a point interaction, an attractive Coulomb potential and a nonlinearity of power type. We prove that for any negative value of the Coulomb charge, for any positive value of the mass and for any <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-subcritical power nonlinearity, such ground states exist and exhibit a logarithmic singularity where the interaction is placed. Moreover, up to multiplication by a phase factor, they are positive, radially symmetric and decreasing. An analogous result is obtained also for minimizers of the action restricted to the Nehari manifold, getting the existence also in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical and supercritical cases.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005722\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005722","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了二维聚焦非线性薛定谔方程在固定质量下的基态存在及其性质,该方程具有点相互作用、有吸引力的库仑势和幂型非线性。我们证明,对于库仑电荷的任何负值、质量的任何正值以及任何 L2 次临界幂非线性,这种基态都是存在的,并在相互作用的位置表现出对数奇异性。此外,在与相位因子相乘之前,它们都是正的、径向对称的和递减的。对于限制在奈哈里流形上的作用最小化,也得到了类似的结果,在 L2 临界和超临界情况下也是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two dimensional NLS ground states with attractive Coulomb potential and point interaction

We study the existence and the properties of ground states at fixed mass for a focusing nonlinear Schrödinger equation in dimension two with a point interaction, an attractive Coulomb potential and a nonlinearity of power type. We prove that for any negative value of the Coulomb charge, for any positive value of the mass and for any L2-subcritical power nonlinearity, such ground states exist and exhibit a logarithmic singularity where the interaction is placed. Moreover, up to multiplication by a phase factor, they are positive, radially symmetric and decreasing. An analogous result is obtained also for minimizers of the action restricted to the Nehari manifold, getting the existence also in the L2-critical and supercritical cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信