具有时间延迟的短记忆分数脉冲科恩-格罗斯伯格神经网络的多重指数稳定性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinsen Zhang, Xiaobing Nie
{"title":"具有时间延迟的短记忆分数脉冲科恩-格罗斯伯格神经网络的多重指数稳定性","authors":"Jinsen Zhang,&nbsp;Xiaobing Nie","doi":"10.1016/j.amc.2024.129066","DOIUrl":null,"url":null,"abstract":"<div><p>Different from the existing multiple asymptotic stability or multiple Mittag-Leffler stability, the multiple exponential stability with explicit and faster convergence rate is addressed in this paper for short memory fractional-order impulsive Cohen-Grossberg neural networks with time delay. Firstly, <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mn>2</mn><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></math></span> total equilibrium points of such <em>n</em>-neuron neural networks can be ensured via the known fixed point theorem. Then, by means of the theory of fractional-order differential equations, the methods of average impulsive interval and Lyapunov function, a series of sufficient conditions for determining the locally exponential stability of <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></math></span> equilibrium points are obtained based on maximum norm, 1-norm and general <em>q</em>-norm (<span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>), respectively. This paper's research reveals the effects of impulsive function, impulsive interval, fractional order and time delay on the dynamic behaviors. Finally, four examples are proposed to demonstrate the effectiveness of theoretic achievements.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple exponential stability for short memory fractional impulsive Cohen-Grossberg neural networks with time delays\",\"authors\":\"Jinsen Zhang,&nbsp;Xiaobing Nie\",\"doi\":\"10.1016/j.amc.2024.129066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different from the existing multiple asymptotic stability or multiple Mittag-Leffler stability, the multiple exponential stability with explicit and faster convergence rate is addressed in this paper for short memory fractional-order impulsive Cohen-Grossberg neural networks with time delay. Firstly, <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mn>2</mn><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></math></span> total equilibrium points of such <em>n</em>-neuron neural networks can be ensured via the known fixed point theorem. Then, by means of the theory of fractional-order differential equations, the methods of average impulsive interval and Lyapunov function, a series of sufficient conditions for determining the locally exponential stability of <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></math></span> equilibrium points are obtained based on maximum norm, 1-norm and general <em>q</em>-norm (<span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>), respectively. This paper's research reveals the effects of impulsive function, impulsive interval, fractional order and time delay on the dynamic behaviors. Finally, four examples are proposed to demonstrate the effectiveness of theoretic achievements.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005277\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005277","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

与现有的多重渐近稳定性或多重 Mittag-Leffler 稳定性不同,本文针对具有时延的短记忆分数阶脉冲 Cohen-Grossberg 神经网络,研究了具有显式和更快收敛速率的多重指数稳定性。首先,通过已知的定点定理可以确保这种 n 神经元神经网络的 ∏i=1n(2Hi+1) 个总平衡点。然后,通过分数阶微分方程理论、平均脉冲区间和 Lyapunov 函数方法,分别基于最大规范、1-规范和一般 q-规范(q=2n),得到了一系列确定 ∏i=1n(Hi+1) 平衡点局部指数稳定性的充分条件。本文的研究揭示了脉冲函数、脉冲间隔、分数阶数和时间延迟对动态行为的影响。最后,本文提出了四个实例来证明理论成果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple exponential stability for short memory fractional impulsive Cohen-Grossberg neural networks with time delays

Different from the existing multiple asymptotic stability or multiple Mittag-Leffler stability, the multiple exponential stability with explicit and faster convergence rate is addressed in this paper for short memory fractional-order impulsive Cohen-Grossberg neural networks with time delay. Firstly, i=1n(2Hi+1) total equilibrium points of such n-neuron neural networks can be ensured via the known fixed point theorem. Then, by means of the theory of fractional-order differential equations, the methods of average impulsive interval and Lyapunov function, a series of sufficient conditions for determining the locally exponential stability of i=1n(Hi+1) equilibrium points are obtained based on maximum norm, 1-norm and general q-norm (q=2n), respectively. This paper's research reveals the effects of impulsive function, impulsive interval, fractional order and time delay on the dynamic behaviors. Finally, four examples are proposed to demonstrate the effectiveness of theoretic achievements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信