利用基于递归神经网络的神经动力学优化技术,对肌腱驱动连续机器人进行无模型优化视觉控制

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shuai He , Chaorong Zou , Zhen Deng , Weiwei Liu , Bingwei He , Jianwei Zhang
{"title":"利用基于递归神经网络的神经动力学优化技术,对肌腱驱动连续机器人进行无模型优化视觉控制","authors":"Shuai He ,&nbsp;Chaorong Zou ,&nbsp;Zhen Deng ,&nbsp;Weiwei Liu ,&nbsp;Bingwei He ,&nbsp;Jianwei Zhang","doi":"10.1016/j.robot.2024.104811","DOIUrl":null,"url":null,"abstract":"<div><p>Tendon-driven continuum robots (TDCRs) have infinite degrees of freedom and high flexibility, posing challenges for accurate modeling and autonomous control, especially in confined environments. This paper presents a model-less optimal visual control (MLOVC) method using neurodynamic optimization to enable autonomous target tracking of TDCRs in confined environments. The TDCR’s kinematics are estimated online from sensory data, establishing a connection between the actuator input and visual features. An optimal visual servoing method based on quadratic programming (QP) is developed to ensure precise target tracking without violating the robot’s physical constraints. An inverse-free recurrent neural network (RNN)-based neurodynamic optimization method is designed to solve the complex QP problem. Comparative simulations and experiments demonstrate that the proposed method outperforms existing methods in target tracking accuracy and computational efficiency. The RNN-based controller successfully achieves target tracking within constraints in confined environments.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104811"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-less optimal visual control of tendon-driven continuum robots using recurrent neural network-based neurodynamic optimization\",\"authors\":\"Shuai He ,&nbsp;Chaorong Zou ,&nbsp;Zhen Deng ,&nbsp;Weiwei Liu ,&nbsp;Bingwei He ,&nbsp;Jianwei Zhang\",\"doi\":\"10.1016/j.robot.2024.104811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tendon-driven continuum robots (TDCRs) have infinite degrees of freedom and high flexibility, posing challenges for accurate modeling and autonomous control, especially in confined environments. This paper presents a model-less optimal visual control (MLOVC) method using neurodynamic optimization to enable autonomous target tracking of TDCRs in confined environments. The TDCR’s kinematics are estimated online from sensory data, establishing a connection between the actuator input and visual features. An optimal visual servoing method based on quadratic programming (QP) is developed to ensure precise target tracking without violating the robot’s physical constraints. An inverse-free recurrent neural network (RNN)-based neurodynamic optimization method is designed to solve the complex QP problem. Comparative simulations and experiments demonstrate that the proposed method outperforms existing methods in target tracking accuracy and computational efficiency. The RNN-based controller successfully achieves target tracking within constraints in confined environments.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"182 \",\"pages\":\"Article 104811\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024001957\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001957","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

肌腱驱动连续机器人(TDCR)具有无限自由度和高柔性,给精确建模和自主控制带来了挑战,尤其是在密闭环境中。本文提出了一种利用神经动力学优化的无模型最优视觉控制(MLOVC)方法,以实现 TDCR 在密闭环境中的自主目标跟踪。TDCR 的运动学是通过感知数据在线估算的,从而在致动器输入和视觉特征之间建立联系。开发了一种基于二次编程(QP)的最佳视觉伺服方法,以确保在不违反机器人物理约束的情况下精确跟踪目标。设计了一种基于无反递归神经网络(RNN)的神经动力学优化方法来解决复杂的 QP 问题。对比模拟和实验证明,所提出的方法在目标跟踪精度和计算效率方面优于现有方法。基于 RNN 的控制器成功地在有限环境中实现了约束条件下的目标跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-less optimal visual control of tendon-driven continuum robots using recurrent neural network-based neurodynamic optimization

Tendon-driven continuum robots (TDCRs) have infinite degrees of freedom and high flexibility, posing challenges for accurate modeling and autonomous control, especially in confined environments. This paper presents a model-less optimal visual control (MLOVC) method using neurodynamic optimization to enable autonomous target tracking of TDCRs in confined environments. The TDCR’s kinematics are estimated online from sensory data, establishing a connection between the actuator input and visual features. An optimal visual servoing method based on quadratic programming (QP) is developed to ensure precise target tracking without violating the robot’s physical constraints. An inverse-free recurrent neural network (RNN)-based neurodynamic optimization method is designed to solve the complex QP problem. Comparative simulations and experiments demonstrate that the proposed method outperforms existing methods in target tracking accuracy and computational efficiency. The RNN-based controller successfully achieves target tracking within constraints in confined environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信