近似广义斯泰纳系统和近优恒定权重码

IF 0.9 2区 数学 Q2 MATHEMATICS
Miao Liu , Chong Shangguan
{"title":"近似广义斯泰纳系统和近优恒定权重码","authors":"Miao Liu ,&nbsp;Chong Shangguan","doi":"10.1016/j.jcta.2024.105955","DOIUrl":null,"url":null,"abstract":"<div><p>Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for <em>all</em> fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds.</p><p>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> denote the maximum size of <em>q</em>-ary CWCs of length <em>n</em> with constant weight <em>w</em> and minimum distance <em>d</em>. One of our main results shows that for <em>all</em> fixed <span><math><mi>q</mi><mo>,</mo><mi>w</mi></math></span> and odd <em>d</em>, one has <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mfrac><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>w</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>t</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>w</mi><mo>−</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of Rödl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> for <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>. A similar result is proved for the maximum size of CCCs.</p><p>We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-Rödl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcourt-Postle, and Glock-Joos-Kim-Kühn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations.</p><p>We also present several intriguing open questions for future research.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105955"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000943/pdfft?md5=65eb96db9a426be78f5105ffe48c2ece&pid=1-s2.0-S0097316524000943-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximate generalized Steiner systems and near-optimal constant weight codes\",\"authors\":\"Miao Liu ,&nbsp;Chong Shangguan\",\"doi\":\"10.1016/j.jcta.2024.105955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for <em>all</em> fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds.</p><p>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> denote the maximum size of <em>q</em>-ary CWCs of length <em>n</em> with constant weight <em>w</em> and minimum distance <em>d</em>. One of our main results shows that for <em>all</em> fixed <span><math><mi>q</mi><mo>,</mo><mi>w</mi></math></span> and odd <em>d</em>, one has <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mfrac><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>w</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow></mfrac></math></span>, where <span><math><mi>t</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>w</mi><mo>−</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of Rödl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> for <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>. A similar result is proved for the maximum size of CCCs.</p><p>We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-Rödl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcourt-Postle, and Glock-Joos-Kim-Kühn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations.</p><p>We also present several intriguing open questions for future research.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"209 \",\"pages\":\"Article 105955\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000943/pdfft?md5=65eb96db9a426be78f5105ffe48c2ece&pid=1-s2.0-S0097316524000943-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000943\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

恒重码(CWC)和恒组成码(CCC)是组合学和编码理论近六十年来广泛研究的两类重要编码。本文证明,对于所有固定奇数距离,存在近似达到经典约翰逊型上界的近优 CWC 和 CCC。让 Aq(n,d,w) 表示长度为 n、权重为 w、距离为 d 的 q-ary CWCs 的最大尺寸。我们的一个主要结果表明,对于所有固定的 q、w 和奇数 d,都有 limn→∞Aq(n,d,w)(nt)=(q-1)t(wt),其中 t=2w-d+12。这意味着最初由埃齐昂提出的近优广义斯坦纳系统的存在,可以看作是罗德尔关于近优斯坦纳系统存在的著名结果的对应物。请注意,在我们的研究之前,人们对 q≥3 时的 Aq(n,d,w) 知之甚少。我们基于著名的弗兰克尔-罗德尔-皮彭格(Frankl-Rödl-Pippenger)超图中近优匹配存在性定理的两个加强版,为我们的两个主要结果提供了不同的证明:第一个证明基于卡恩(Kahn)对上述定理的线性规划变式,第二个证明基于德尔库特-波斯特尔(Delcourt-Postle)和格洛克-朱斯-金-金-利切夫(Glock-Joos-Kim-Kühn-Lichev)最近关于避免某些禁止配置的近优匹配存在性的独立工作。我们还为未来研究提出了几个引人入胜的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate generalized Steiner systems and near-optimal constant weight codes

Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for all fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds.

Let Aq(n,d,w) denote the maximum size of q-ary CWCs of length n with constant weight w and minimum distance d. One of our main results shows that for all fixed q,w and odd d, one has limnAq(n,d,w)(nt)=(q1)t(wt), where t=2wd+12. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of Rödl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about Aq(n,d,w) for q3. A similar result is proved for the maximum size of CCCs.

We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-Rödl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcourt-Postle, and Glock-Joos-Kim-Kühn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations.

We also present several intriguing open questions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信