Hongqing Liu , Fanhua Kong , Haiwei Yin , Ariane Middel , Tao Sun , Shaoqi Yang , Jian Lu , Zhenya Li
{"title":"中国南京大面积屋顶绿化中碳、氮、磷化学计量特性的季节动态变化","authors":"Hongqing Liu , Fanhua Kong , Haiwei Yin , Ariane Middel , Tao Sun , Shaoqi Yang , Jian Lu , Zhenya Li","doi":"10.1016/j.ufug.2024.128515","DOIUrl":null,"url":null,"abstract":"<div><p>Green roofs (GRs) are vital for shaping the material cycles of urban ecosystems as a form of distributed green infrastructure. However, current studies have predominantly focused on the material exchange between GRs and the urban environment, neglecting the internal distribution and equilibrium of constituent elements. By monitoring carbon (C), nitrogen (N), and phosphorus (P) in <em>Sedum lineare</em> Thunb and four substrates throughout the seasons, this study analyzes the ecological stoichiometric characteristics of an extensive GR in Nanjing, China. Intra-annual ratios of C:N (46.02, 13.38, 15.40), C:P (252.41, 57.85, 47.22), and N:P (5.75, 4.23, 3.84) were identified in the plant, substrate, and substrate microbial biomass, respectively. The intra-annual ratios of plant to substrate C, N, and P were roughly 9:1, 7:3, and 6:4, respectively. The use of different substrates resulted in significant variations in plant C, N, and P levels and their quantitative ratios, leading to distribution differences of these elements. Furthermore, substrate C, N, and P levels exhibit a generalized threshold effect on microbial biomass and plant C, N, and P concentrations. Notably, the substrate demonstrates an organic C sink potential of 7.11 g/kg/season, surpassing that of plants in unit mass. These findings contribute to understanding the distribution and dynamics of C, N, and P elements within extensive GRs.</p></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":"101 ","pages":"Article 128515"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal dynamics of carbon, nitrogen, and phosphorus stoichiometric traits in an extensive green roof in Nanjing, China\",\"authors\":\"Hongqing Liu , Fanhua Kong , Haiwei Yin , Ariane Middel , Tao Sun , Shaoqi Yang , Jian Lu , Zhenya Li\",\"doi\":\"10.1016/j.ufug.2024.128515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Green roofs (GRs) are vital for shaping the material cycles of urban ecosystems as a form of distributed green infrastructure. However, current studies have predominantly focused on the material exchange between GRs and the urban environment, neglecting the internal distribution and equilibrium of constituent elements. By monitoring carbon (C), nitrogen (N), and phosphorus (P) in <em>Sedum lineare</em> Thunb and four substrates throughout the seasons, this study analyzes the ecological stoichiometric characteristics of an extensive GR in Nanjing, China. Intra-annual ratios of C:N (46.02, 13.38, 15.40), C:P (252.41, 57.85, 47.22), and N:P (5.75, 4.23, 3.84) were identified in the plant, substrate, and substrate microbial biomass, respectively. The intra-annual ratios of plant to substrate C, N, and P were roughly 9:1, 7:3, and 6:4, respectively. The use of different substrates resulted in significant variations in plant C, N, and P levels and their quantitative ratios, leading to distribution differences of these elements. Furthermore, substrate C, N, and P levels exhibit a generalized threshold effect on microbial biomass and plant C, N, and P concentrations. Notably, the substrate demonstrates an organic C sink potential of 7.11 g/kg/season, surpassing that of plants in unit mass. These findings contribute to understanding the distribution and dynamics of C, N, and P elements within extensive GRs.</p></div>\",\"PeriodicalId\":49394,\"journal\":{\"name\":\"Urban Forestry & Urban Greening\",\"volume\":\"101 \",\"pages\":\"Article 128515\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Forestry & Urban Greening\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1618866724003133\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724003133","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
摘要
屋顶绿化(GR)作为一种分布式绿色基础设施,对于形成城市生态系统的物质循环至关重要。然而,目前的研究主要集中于屋顶绿化与城市环境之间的物质交换,而忽视了组成元素的内部分布和平衡。本研究通过对南京市一处大面积绿色生态系统的四季景天和四种基质中碳(C)、氮(N)和磷(P)的监测,分析了该系统的生态平衡特征。研究确定了植物、基质和基质微生物生物量中C:N(46.02, 13.38, 15.40)、C:P(252.41, 57.85, 47.22)和N:P(5.75, 4.23, 3.84)的年内比值。植物与基质的 C、N 和 P 年内比例分别约为 9:1、7:3 和 6:4。使用不同的基质会导致植物的 C、N 和 P 含量及其数量比发生显著变化,从而导致这些元素的分布差异。此外,基质中的碳、氮、磷水平对微生物生物量和植物碳、氮、磷浓度具有普遍的阈值效应。值得注意的是,基质的有机碳汇潜力为 7.11 克/千克/季节,在单位质量上超过了植物的有机碳汇潜力。这些发现有助于了解大面积原生质中碳、氮和磷元素的分布和动态。
Seasonal dynamics of carbon, nitrogen, and phosphorus stoichiometric traits in an extensive green roof in Nanjing, China
Green roofs (GRs) are vital for shaping the material cycles of urban ecosystems as a form of distributed green infrastructure. However, current studies have predominantly focused on the material exchange between GRs and the urban environment, neglecting the internal distribution and equilibrium of constituent elements. By monitoring carbon (C), nitrogen (N), and phosphorus (P) in Sedum lineare Thunb and four substrates throughout the seasons, this study analyzes the ecological stoichiometric characteristics of an extensive GR in Nanjing, China. Intra-annual ratios of C:N (46.02, 13.38, 15.40), C:P (252.41, 57.85, 47.22), and N:P (5.75, 4.23, 3.84) were identified in the plant, substrate, and substrate microbial biomass, respectively. The intra-annual ratios of plant to substrate C, N, and P were roughly 9:1, 7:3, and 6:4, respectively. The use of different substrates resulted in significant variations in plant C, N, and P levels and their quantitative ratios, leading to distribution differences of these elements. Furthermore, substrate C, N, and P levels exhibit a generalized threshold effect on microbial biomass and plant C, N, and P concentrations. Notably, the substrate demonstrates an organic C sink potential of 7.11 g/kg/season, surpassing that of plants in unit mass. These findings contribute to understanding the distribution and dynamics of C, N, and P elements within extensive GRs.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.