有关过氧化物太阳能电池装置的数据驱动分析

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
SeungUn Lee , Yang Jeong Park , Jongbeom Kim , Jino Im , Sungroh Yoon , Sang Il Seok
{"title":"有关过氧化物太阳能电池装置的数据驱动分析","authors":"SeungUn Lee ,&nbsp;Yang Jeong Park ,&nbsp;Jongbeom Kim ,&nbsp;Jino Im ,&nbsp;Sungroh Yoon ,&nbsp;Sang Il Seok","doi":"10.1016/j.cap.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in artificial intelligence (AI) techniques have significantly influenced daily life and the forefront of research and development. Data-driven research using AI accelerates the resolution of complex problems and aids in uncovering previously unknown knowledge and scientific discoveries. In this study, we propose a data-driven approach for investigating perovskite solar cells, a vibrant area within renewable energy applications. This approach incorporates the generation of a robust dataset, developing an interpretable machine learning model based on knowledge-based feature selection, and analyzing the impacts of material properties on the device performance. Through this framework, we successfully constructed accurate predictive models for the efficiency of perovskite solar cells and assessed the importance of each feature. Our analysis demonstrates that our models effectively capture existing knowledge about perovskite solar cells and can potentially inform the design of new perovskite solar cell configurations.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 98-107"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven analysis on perovskite solar cell devices\",\"authors\":\"SeungUn Lee ,&nbsp;Yang Jeong Park ,&nbsp;Jongbeom Kim ,&nbsp;Jino Im ,&nbsp;Sungroh Yoon ,&nbsp;Sang Il Seok\",\"doi\":\"10.1016/j.cap.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in artificial intelligence (AI) techniques have significantly influenced daily life and the forefront of research and development. Data-driven research using AI accelerates the resolution of complex problems and aids in uncovering previously unknown knowledge and scientific discoveries. In this study, we propose a data-driven approach for investigating perovskite solar cells, a vibrant area within renewable energy applications. This approach incorporates the generation of a robust dataset, developing an interpretable machine learning model based on knowledge-based feature selection, and analyzing the impacts of material properties on the device performance. Through this framework, we successfully constructed accurate predictive models for the efficiency of perovskite solar cells and assessed the importance of each feature. Our analysis demonstrates that our models effectively capture existing knowledge about perovskite solar cells and can potentially inform the design of new perovskite solar cell configurations.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"68 \",\"pages\":\"Pages 98-107\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002037\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002037","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)技术的最新进展极大地影响了日常生活以及研究与开发的前沿领域。利用人工智能进行数据驱动研究可加快复杂问题的解决,并有助于发掘以前未知的知识和科学发现。在本研究中,我们提出了一种数据驱动型方法,用于研究可再生能源应用中一个充满活力的领域--包晶体太阳能电池。这种方法包括生成稳健的数据集,开发基于知识特征选择的可解释机器学习模型,以及分析材料特性对设备性能的影响。通过这一框架,我们成功地构建了包晶体太阳能电池效率的精确预测模型,并评估了每个特征的重要性。我们的分析表明,我们的模型有效地捕捉了有关包晶体太阳能电池的现有知识,并有可能为新型包晶体太阳能电池配置的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven analysis on perovskite solar cell devices

Data-driven analysis on perovskite solar cell devices

Recent advancements in artificial intelligence (AI) techniques have significantly influenced daily life and the forefront of research and development. Data-driven research using AI accelerates the resolution of complex problems and aids in uncovering previously unknown knowledge and scientific discoveries. In this study, we propose a data-driven approach for investigating perovskite solar cells, a vibrant area within renewable energy applications. This approach incorporates the generation of a robust dataset, developing an interpretable machine learning model based on knowledge-based feature selection, and analyzing the impacts of material properties on the device performance. Through this framework, we successfully constructed accurate predictive models for the efficiency of perovskite solar cells and assessed the importance of each feature. Our analysis demonstrates that our models effectively capture existing knowledge about perovskite solar cells and can potentially inform the design of new perovskite solar cell configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信