Jackson H. Birrell , Wilco C.E.P. Verberk , H. Arthur Woods
{"title":"15 种昆虫的组织氧含量存在一致的差异,这反映了氧气供应和需求之间的平衡,并凸显了一种迄今未知的适应性,即从水中汲取足够的氧气","authors":"Jackson H. Birrell , Wilco C.E.P. Verberk , H. Arthur Woods","doi":"10.1016/j.cris.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO<sub>2</sub>) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO<sub>2</sub> varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO<sub>2</sub> (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO<sub>2</sub> levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO<sub>2</sub> remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO<sub>2</sub> was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO<sub>2</sub> is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100095"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000258/pdfft?md5=e883d413040d01f9f969cafdd597fa74&pid=1-s2.0-S2666515824000258-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Consistent differences in tissue oxygen levels across 15 insect species reflect a balance between oxygen supply and demand and highlight a hitherto unknown adaptation for extracting sufficient oxygen from water\",\"authors\":\"Jackson H. Birrell , Wilco C.E.P. Verberk , H. Arthur Woods\",\"doi\":\"10.1016/j.cris.2024.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO<sub>2</sub>) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO<sub>2</sub> varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO<sub>2</sub> (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO<sub>2</sub> levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO<sub>2</sub> remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO<sub>2</sub> was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO<sub>2</sub> is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.</p></div>\",\"PeriodicalId\":34629,\"journal\":{\"name\":\"Current Research in Insect Science\",\"volume\":\"6 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666515824000258/pdfft?md5=e883d413040d01f9f969cafdd597fa74&pid=1-s2.0-S2666515824000258-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Insect Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666515824000258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666515824000258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Consistent differences in tissue oxygen levels across 15 insect species reflect a balance between oxygen supply and demand and highlight a hitherto unknown adaptation for extracting sufficient oxygen from water
Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO2) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO2 varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO2 (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO2 levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO2 remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO2 was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO2 is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.