{"title":"硬粒小麦对慢性铬暴露的转录反应揭示了参与金属解毒和分区的候选蛋白质","authors":"","doi":"10.1016/j.envexpbot.2024.105953","DOIUrl":null,"url":null,"abstract":"<div><p>Chromium phytotoxicity results in relevant alterations to plant physiology, gene expression, and genomic DNA methylation at a transgenerational level. Herein, transcriptional responses of durum wheat (<em>Triticum turgidum</em> L.) to chronic chromium exposure were explored in roots and leaves by RNA-seq approach. Plants grown all the time in a hydroponic system supplemented with 2.5 and 10 µM hexavalent chromium were compared to unstressful control plants, assessing biomass and seed yield analyses after senescence. Then, transcriptomic analysis was performed with these plants kept under 10 µM chromium 50 days after the onset of exposure. The chromium concentrations used were considered the lowest dose sufficient to alter gene expression without impeding plant development, while the sampling time reflected the effects in the pre-harvest phase and long-lasting defense mechanisms. Root and leaf samples from plants kept under 10 µM chromium stress and from unstressful control plants were analyzed, generating 12 RNA-seq libraries. In total, 965 and 810 transcripts were found to be differentially expressed, respectively, in roots and leaves in response to 10 µM chromium stress. In roots, transcriptional changes were noted in the primary and secondary metabolism, redox homeostasis, protein modification, solute transport, nutrient uptake, and external stimuli responses. Meanwhile, the transcriptional changes in leaves were primarily found in the secondary metabolism, hormone-related pathways, chromatin modifications, cell division, protein modification and homeostasis, solute transport, and nutrient uptake. In particular, the metal uptake and translocation pathways were studied with greater emphasis to identify key proteins involved in chromium transport and compartmentalization. Furthermore, several genes involved in the biosynthesis of malate-derived organic acids, trace metal transport/detoxification/chelation, and vacuolar compartmentalization were linked to primary defense responses, and some of them were also associated with two putative gene clusters. Therefore, these genes and gene clusters are suggested as valuable biotechnological targets for future proof-of-concept studies aimed at genetic engineering of durum wheat to improve plant tolerance to chromium exposure.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098847224003113/pdfft?md5=66cc6a46c836e4df0c335dd27ece7154&pid=1-s2.0-S0098847224003113-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transcriptional responses of durum wheat to chronic chromium exposure reveal candidate proteins involved in metal detoxification and compartmentalization\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chromium phytotoxicity results in relevant alterations to plant physiology, gene expression, and genomic DNA methylation at a transgenerational level. Herein, transcriptional responses of durum wheat (<em>Triticum turgidum</em> L.) to chronic chromium exposure were explored in roots and leaves by RNA-seq approach. Plants grown all the time in a hydroponic system supplemented with 2.5 and 10 µM hexavalent chromium were compared to unstressful control plants, assessing biomass and seed yield analyses after senescence. Then, transcriptomic analysis was performed with these plants kept under 10 µM chromium 50 days after the onset of exposure. The chromium concentrations used were considered the lowest dose sufficient to alter gene expression without impeding plant development, while the sampling time reflected the effects in the pre-harvest phase and long-lasting defense mechanisms. Root and leaf samples from plants kept under 10 µM chromium stress and from unstressful control plants were analyzed, generating 12 RNA-seq libraries. In total, 965 and 810 transcripts were found to be differentially expressed, respectively, in roots and leaves in response to 10 µM chromium stress. In roots, transcriptional changes were noted in the primary and secondary metabolism, redox homeostasis, protein modification, solute transport, nutrient uptake, and external stimuli responses. Meanwhile, the transcriptional changes in leaves were primarily found in the secondary metabolism, hormone-related pathways, chromatin modifications, cell division, protein modification and homeostasis, solute transport, and nutrient uptake. In particular, the metal uptake and translocation pathways were studied with greater emphasis to identify key proteins involved in chromium transport and compartmentalization. Furthermore, several genes involved in the biosynthesis of malate-derived organic acids, trace metal transport/detoxification/chelation, and vacuolar compartmentalization were linked to primary defense responses, and some of them were also associated with two putative gene clusters. Therefore, these genes and gene clusters are suggested as valuable biotechnological targets for future proof-of-concept studies aimed at genetic engineering of durum wheat to improve plant tolerance to chromium exposure.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003113/pdfft?md5=66cc6a46c836e4df0c335dd27ece7154&pid=1-s2.0-S0098847224003113-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003113\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003113","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transcriptional responses of durum wheat to chronic chromium exposure reveal candidate proteins involved in metal detoxification and compartmentalization
Chromium phytotoxicity results in relevant alterations to plant physiology, gene expression, and genomic DNA methylation at a transgenerational level. Herein, transcriptional responses of durum wheat (Triticum turgidum L.) to chronic chromium exposure were explored in roots and leaves by RNA-seq approach. Plants grown all the time in a hydroponic system supplemented with 2.5 and 10 µM hexavalent chromium were compared to unstressful control plants, assessing biomass and seed yield analyses after senescence. Then, transcriptomic analysis was performed with these plants kept under 10 µM chromium 50 days after the onset of exposure. The chromium concentrations used were considered the lowest dose sufficient to alter gene expression without impeding plant development, while the sampling time reflected the effects in the pre-harvest phase and long-lasting defense mechanisms. Root and leaf samples from plants kept under 10 µM chromium stress and from unstressful control plants were analyzed, generating 12 RNA-seq libraries. In total, 965 and 810 transcripts were found to be differentially expressed, respectively, in roots and leaves in response to 10 µM chromium stress. In roots, transcriptional changes were noted in the primary and secondary metabolism, redox homeostasis, protein modification, solute transport, nutrient uptake, and external stimuli responses. Meanwhile, the transcriptional changes in leaves were primarily found in the secondary metabolism, hormone-related pathways, chromatin modifications, cell division, protein modification and homeostasis, solute transport, and nutrient uptake. In particular, the metal uptake and translocation pathways were studied with greater emphasis to identify key proteins involved in chromium transport and compartmentalization. Furthermore, several genes involved in the biosynthesis of malate-derived organic acids, trace metal transport/detoxification/chelation, and vacuolar compartmentalization were linked to primary defense responses, and some of them were also associated with two putative gene clusters. Therefore, these genes and gene clusters are suggested as valuable biotechnological targets for future proof-of-concept studies aimed at genetic engineering of durum wheat to improve plant tolerance to chromium exposure.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.