{"title":"语义驱动的图像段落标题旁路网络","authors":"Qi Zheng , Chaoyue Wang , Dadong Wang","doi":"10.1016/j.cviu.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>Image paragraph captioning aims to describe a given image with a sequence of coherent sentences. Most existing methods model the coherence through the topic transition that dynamically infers a topic vector from preceding sentences. However, these methods still suffer from immediate or delayed repetitions in generated paragraphs because (i) the entanglement of syntax and semantics distracts the topic vector from attending pertinent visual regions; (ii) there are few constraints or rewards for learning long-range transitions. In this paper, we propose a bypass network that separately models semantics and linguistic syntax of preceding sentences. Specifically, the proposed model consists of two main modules, i.e. a topic transition module and a sentence generation module. The former takes previous semantic vectors as queries and applies attention mechanism on regional features to acquire the next topic vector, which reduces immediate repetition by eliminating linguistics. The latter decodes the topic vector and the preceding syntax state to produce the following sentence. To further reduce delayed repetition in generated paragraphs, we devise a replacement-based reward for the REINFORCE training. Comprehensive experiments on the widely used benchmark demonstrate the superiority of the proposed model over the state of the art for coherence while maintaining high accuracy.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104154"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bypass network for semantics driven image paragraph captioning\",\"authors\":\"Qi Zheng , Chaoyue Wang , Dadong Wang\",\"doi\":\"10.1016/j.cviu.2024.104154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image paragraph captioning aims to describe a given image with a sequence of coherent sentences. Most existing methods model the coherence through the topic transition that dynamically infers a topic vector from preceding sentences. However, these methods still suffer from immediate or delayed repetitions in generated paragraphs because (i) the entanglement of syntax and semantics distracts the topic vector from attending pertinent visual regions; (ii) there are few constraints or rewards for learning long-range transitions. In this paper, we propose a bypass network that separately models semantics and linguistic syntax of preceding sentences. Specifically, the proposed model consists of two main modules, i.e. a topic transition module and a sentence generation module. The former takes previous semantic vectors as queries and applies attention mechanism on regional features to acquire the next topic vector, which reduces immediate repetition by eliminating linguistics. The latter decodes the topic vector and the preceding syntax state to produce the following sentence. To further reduce delayed repetition in generated paragraphs, we devise a replacement-based reward for the REINFORCE training. Comprehensive experiments on the widely used benchmark demonstrate the superiority of the proposed model over the state of the art for coherence while maintaining high accuracy.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"249 \",\"pages\":\"Article 104154\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002352\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002352","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bypass network for semantics driven image paragraph captioning
Image paragraph captioning aims to describe a given image with a sequence of coherent sentences. Most existing methods model the coherence through the topic transition that dynamically infers a topic vector from preceding sentences. However, these methods still suffer from immediate or delayed repetitions in generated paragraphs because (i) the entanglement of syntax and semantics distracts the topic vector from attending pertinent visual regions; (ii) there are few constraints or rewards for learning long-range transitions. In this paper, we propose a bypass network that separately models semantics and linguistic syntax of preceding sentences. Specifically, the proposed model consists of two main modules, i.e. a topic transition module and a sentence generation module. The former takes previous semantic vectors as queries and applies attention mechanism on regional features to acquire the next topic vector, which reduces immediate repetition by eliminating linguistics. The latter decodes the topic vector and the preceding syntax state to produce the following sentence. To further reduce delayed repetition in generated paragraphs, we devise a replacement-based reward for the REINFORCE training. Comprehensive experiments on the widely used benchmark demonstrate the superiority of the proposed model over the state of the art for coherence while maintaining high accuracy.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems