{"title":"材料研究中的机器学习:过去十年的发展与未来的挑战","authors":"Anubhav Jain","doi":"10.1016/j.cossms.2024.101189","DOIUrl":null,"url":null,"abstract":"<div><p>The number of studies that apply machine learning (ML) to materials science has been growing at a rate of approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also demonstrates how new research can effectively build upon past research, particular in the domain of ML models trained on density functional theory calculation data. Next, I present the progression of best scores as a function of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dramatic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that use conventional ML (random forest, support vector regression, <em>etc.</em>) to the use of graph neural network techniques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, extrapolation, interpretation, access, and relevance.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"33 ","pages":"Article 101189"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135902862400055X/pdfft?md5=daf1f5860dd3d81b7ae5c13746fc62e9&pid=1-s2.0-S135902862400055X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning in materials research: Developments over the last decade and challenges for the future\",\"authors\":\"Anubhav Jain\",\"doi\":\"10.1016/j.cossms.2024.101189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The number of studies that apply machine learning (ML) to materials science has been growing at a rate of approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also demonstrates how new research can effectively build upon past research, particular in the domain of ML models trained on density functional theory calculation data. Next, I present the progression of best scores as a function of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dramatic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that use conventional ML (random forest, support vector regression, <em>etc.</em>) to the use of graph neural network techniques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, extrapolation, interpretation, access, and relevance.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"33 \",\"pages\":\"Article 101189\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S135902862400055X/pdfft?md5=daf1f5860dd3d81b7ae5c13746fc62e9&pid=1-s2.0-S135902862400055X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135902862400055X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902862400055X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在过去十年中,将机器学习(ML)应用于材料科学的研究数量以每年约 1.67 倍的速度增长。在这篇综述中,我将从多个方面考察这一增长。首先,我分析了将机器学习应用于材料科学的论文中最常用的工具(软件、数据库、材料科学方法和 ML 方法)。分析表明,尽管深度学习技术在不断发展,但从整体上看,经典机器学习的使用仍占主导地位。它还展示了新研究如何有效地借鉴过去的研究,尤其是在根据密度泛函理论计算数据训练的 ML 模型领域。接下来,我介绍了在 matbench 材料科学基准中,随着时间的推移,最佳分数在形成焓预测方面的进展情况。特别是,从使用传统 ML(随机森林、支持向量回归等)的基于特征的方法到使用图神经网络技术,误差大幅减少了 7 倍。最后,我就未来的挑战和机遇发表了看法,重点是数据规模和复杂性、外推、解释、访问和相关性。
Machine learning in materials research: Developments over the last decade and challenges for the future
The number of studies that apply machine learning (ML) to materials science has been growing at a rate of approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also demonstrates how new research can effectively build upon past research, particular in the domain of ML models trained on density functional theory calculation data. Next, I present the progression of best scores as a function of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dramatic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that use conventional ML (random forest, support vector regression, etc.) to the use of graph neural network techniques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, extrapolation, interpretation, access, and relevance.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field