正常和微重力条件下流动沸腾的流体力学和传热的实验研究与建模

IF 3.6 2区 工程技术 Q1 MECHANICS
Paul Onubi Ayegba, Julien Sebilleau, Catherine Colin
{"title":"正常和微重力条件下流动沸腾的流体力学和传热的实验研究与建模","authors":"Paul Onubi Ayegba,&nbsp;Julien Sebilleau,&nbsp;Catherine Colin","doi":"10.1016/j.ijmultiphaseflow.2024.104991","DOIUrl":null,"url":null,"abstract":"<div><p>The development of long-term space thermal management systems has informed research into the influence of gravity on boiling. This work explored the influence of gravity on the hydrodynamics and heat transfer of boiling flow. Experiments were carried out using two test loops each consisting of a 6 mmID transparent cylindrical test section. Upward (<span><math><mrow><mo>+</mo><mn>1</mn><mi>░</mi><mi>g</mi></mrow></math></span>) and downward (<span><math><mrow><mo>−</mo><mn>1</mn><mi>░</mi><mi>g</mi></mrow></math></span>) flow boiling experiments were carried out in the laboratory while microgravity (<span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span>) experiments were carried out during a parabolic flight campaign. The results of flow visualisation showed significant influence of gravity on the flow patterns and the influence of gravity was generally limited to mass flux, <span><math><mrow><mi>G</mi><mo>≤</mo><mn>400</mn><mspace></mspace><mi>k</mi><mi>g</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup><mi>s</mi></mrow></math></span> and/or vapor quality, <span><math><mrow><mi>x</mi><mo>≤</mo><mn>0.35</mn></mrow></math></span>. In all three gravity conditions, the measured heat transfer coefficient was influenced by heat flux, mass flux and/or vapor quality. For liquid Reynolds number, <span><math><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>l</mi><mi>o</mi></mrow></msub><mo>≤</mo><mn>2000</mn><mspace></mspace><mrow><mo>(</mo><mrow><mi>G</mi><mo>≤</mo><mn>150</mn><mspace></mspace><mi>k</mi><mi>g</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup><mi>s</mi></mrow><mo>)</mo></mrow></mrow></math></span> and boiling number <span><math><mrow><mi>B</mi><mi>o</mi><mo>&lt;</mo><mn>0.002</mn></mrow></math></span> the measured heat transfer coefficient was highest in <span><math><mrow><mo>−</mo><mn>1</mn><mi>g</mi></mrow></math></span> flow and lowest in <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> flow but becomes comparable at <span><math><mrow><mi>B</mi><mi>o</mi><mo>&gt;</mo><mn>0.002</mn></mrow></math></span>. A correlation for predicting microgravity heat transfer coefficient was proposed in this work and the proposed correlation predicted 100 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data in the current work within <span><math><mrow><mo>±</mo><mn>20</mn><mo>%</mo></mrow></math></span>, predicted nearly 100 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data of <span><span>Ohta et al. (2013)</span></span> within <span><math><mrow><mo>±</mo><mn>30</mn><mo>%</mo></mrow></math></span> and around 85 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data of <span><span>Narcy (2014)</span></span> within -20 % to +50 %. A correlation for predicting the gravity dependent regime as it relates to heat transfer coefficient in <span><math><mrow><mo>+</mo><mn>1</mn><mi>g</mi></mrow></math></span> and <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> flows was also proposed in this work. The proposed criterium correctly predicted over 85 % of the gravity-dependent heat transfer coefficient in the current work and the works of <span><span>Lebon et al. (2019)</span></span>, <span><span>Narcy (2014)</span></span>, <span><span>Ohta et al. (2013)</span></span>.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 104991"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301932224002684/pdfft?md5=495272ac2b385d10ddf92c05eb0a8c29&pid=1-s2.0-S0301932224002684-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation and modelling of hydrodynamics and heat transfer in flow boiling in normal and microgravity conditions\",\"authors\":\"Paul Onubi Ayegba,&nbsp;Julien Sebilleau,&nbsp;Catherine Colin\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of long-term space thermal management systems has informed research into the influence of gravity on boiling. This work explored the influence of gravity on the hydrodynamics and heat transfer of boiling flow. Experiments were carried out using two test loops each consisting of a 6 mmID transparent cylindrical test section. Upward (<span><math><mrow><mo>+</mo><mn>1</mn><mi>░</mi><mi>g</mi></mrow></math></span>) and downward (<span><math><mrow><mo>−</mo><mn>1</mn><mi>░</mi><mi>g</mi></mrow></math></span>) flow boiling experiments were carried out in the laboratory while microgravity (<span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span>) experiments were carried out during a parabolic flight campaign. The results of flow visualisation showed significant influence of gravity on the flow patterns and the influence of gravity was generally limited to mass flux, <span><math><mrow><mi>G</mi><mo>≤</mo><mn>400</mn><mspace></mspace><mi>k</mi><mi>g</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup><mi>s</mi></mrow></math></span> and/or vapor quality, <span><math><mrow><mi>x</mi><mo>≤</mo><mn>0.35</mn></mrow></math></span>. In all three gravity conditions, the measured heat transfer coefficient was influenced by heat flux, mass flux and/or vapor quality. For liquid Reynolds number, <span><math><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>l</mi><mi>o</mi></mrow></msub><mo>≤</mo><mn>2000</mn><mspace></mspace><mrow><mo>(</mo><mrow><mi>G</mi><mo>≤</mo><mn>150</mn><mspace></mspace><mi>k</mi><mi>g</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup><mi>s</mi></mrow><mo>)</mo></mrow></mrow></math></span> and boiling number <span><math><mrow><mi>B</mi><mi>o</mi><mo>&lt;</mo><mn>0.002</mn></mrow></math></span> the measured heat transfer coefficient was highest in <span><math><mrow><mo>−</mo><mn>1</mn><mi>g</mi></mrow></math></span> flow and lowest in <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> flow but becomes comparable at <span><math><mrow><mi>B</mi><mi>o</mi><mo>&gt;</mo><mn>0.002</mn></mrow></math></span>. A correlation for predicting microgravity heat transfer coefficient was proposed in this work and the proposed correlation predicted 100 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data in the current work within <span><math><mrow><mo>±</mo><mn>20</mn><mo>%</mo></mrow></math></span>, predicted nearly 100 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data of <span><span>Ohta et al. (2013)</span></span> within <span><math><mrow><mo>±</mo><mn>30</mn><mo>%</mo></mrow></math></span> and around 85 % of the <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> data of <span><span>Narcy (2014)</span></span> within -20 % to +50 %. A correlation for predicting the gravity dependent regime as it relates to heat transfer coefficient in <span><math><mrow><mo>+</mo><mn>1</mn><mi>g</mi></mrow></math></span> and <span><math><mrow><mi>μ</mi><mi>g</mi></mrow></math></span> flows was also proposed in this work. The proposed criterium correctly predicted over 85 % of the gravity-dependent heat transfer coefficient in the current work and the works of <span><span>Lebon et al. (2019)</span></span>, <span><span>Narcy (2014)</span></span>, <span><span>Ohta et al. (2013)</span></span>.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"181 \",\"pages\":\"Article 104991\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002684/pdfft?md5=495272ac2b385d10ddf92c05eb0a8c29&pid=1-s2.0-S0301932224002684-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002684\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002684","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

长期太空热管理系统的开发为研究重力对沸腾的影响提供了依据。这项研究探讨了重力对沸腾流的流体力学和传热的影响。实验使用两个测试环进行,每个测试环由一个 6 mmID 的透明圆柱测试部分组成。向上(+1░g)和向下(-1░g)流动沸腾实验在实验室进行,而微重力(μg)实验则在抛物线飞行活动中进行。流动可视化结果表明,重力对流动模式有显著影响,而且重力的影响一般仅限于质量通量 G≤400kg/m2s 和/或蒸汽质量 x≤0.35。在所有三种重力条件下,测得的传热系数都受到热通量、质量通量和/或蒸汽质量的影响。对于液体雷诺数 Relo≤2000(G≤150kg/m2s)和沸腾数 Bo<0.002,测量到的传热系数在 -1g 流量下最高,在 μg 流量下最低,但在 Bo>0.002 时变得相当。在这项工作中提出了一种预测微重力传热系数的相关方法,所提出的相关方法对当前工作中的μg数据的预测在±20%以内,对Ohta等人(2013年)的μg数据的预测在±30%以内,对Narcy(2014年)的μg数据的预测在-20%至+50%以内,对Narcy(2014年)的μg数据的预测在-20%至+50%以内。在这项工作中,还提出了一种预测重力依赖机制的相关方法,因为它与 +1g 和 μg 流量中的传热系数有关。在目前的工作和 Lebon 等人(2019 年)、Narcy(2014 年)、Ohta 等人(2013 年)的工作中,所提出的标准正确预测了超过 85% 的重力相关传热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental investigation and modelling of hydrodynamics and heat transfer in flow boiling in normal and microgravity conditions

Experimental investigation and modelling of hydrodynamics and heat transfer in flow boiling in normal and microgravity conditions

The development of long-term space thermal management systems has informed research into the influence of gravity on boiling. This work explored the influence of gravity on the hydrodynamics and heat transfer of boiling flow. Experiments were carried out using two test loops each consisting of a 6 mmID transparent cylindrical test section. Upward (+1g) and downward (1g) flow boiling experiments were carried out in the laboratory while microgravity (μg) experiments were carried out during a parabolic flight campaign. The results of flow visualisation showed significant influence of gravity on the flow patterns and the influence of gravity was generally limited to mass flux, G400kg/m2s and/or vapor quality, x0.35. In all three gravity conditions, the measured heat transfer coefficient was influenced by heat flux, mass flux and/or vapor quality. For liquid Reynolds number, Relo2000(G150kg/m2s) and boiling number Bo<0.002 the measured heat transfer coefficient was highest in 1g flow and lowest in μg flow but becomes comparable at Bo>0.002. A correlation for predicting microgravity heat transfer coefficient was proposed in this work and the proposed correlation predicted 100 % of the μg data in the current work within ±20%, predicted nearly 100 % of the μg data of Ohta et al. (2013) within ±30% and around 85 % of the μg data of Narcy (2014) within -20 % to +50 %. A correlation for predicting the gravity dependent regime as it relates to heat transfer coefficient in +1g and μg flows was also proposed in this work. The proposed criterium correctly predicted over 85 % of the gravity-dependent heat transfer coefficient in the current work and the works of Lebon et al. (2019), Narcy (2014), Ohta et al. (2013).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信