{"title":"农业地区人工补给过程中镉归宿与迁移机制的实验和数值研究","authors":"","doi":"10.1016/j.gsd.2024.101327","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural Managed Aquifer Recharge (AgMAR) uses agricultural lands and floodwater to enhance groundwater recharge, but its effectiveness can be hindered by heavy metals like cadmium (Cd), which pose risks to groundwater quality. Cd is particularly concerning due to its high mobility and persistence in the environment. This study investigates Cd's fate and transport in agricultural regions during MAR, focusing on sandy loam soils through batch and column experiments. Equilibrium and kinetic batch studies were conducted under varying Cd concentrations and exposure times to quantify the adsorption capacity and rate. HYDRUS-2D was used to simulate Cd's transport in soil under various ponding depths and Cd concentrations. Results showed a maximum Cd adsorption capacity of 439.58 mg/kg, with the Freundlich isotherm providing a better fit (R<sup>2</sup> = 0.98) and indicating heterogeneous adsorption sites (<em>n</em> = 0.389). The kinetic experiment indicated chemisorption as the predominant mechanism, with an equilibrium adsorption capacity of 236.49 mg/kg. The pseudo-second-order kinetic model (rate constant 0.0016 h⁻<sup>1</sup>, R<sup>2</sup> = 0.99) suggested that adsorption kinetics are influenced by Cd concentration and available adsorption sites. The column experimental findings supported by HYDRUS-2D modeling successfully explained the fate and transport of Cd within the soil columns. The model fitted parameter values for Freundlich adsorption isotherm coefficient (KF), linearity factor (Nu), and kinetic rate coefficient are (α) 47.37 L/kg, 0.00389 cm³/ppm and 0.0029 min⁻<sup>1</sup>, respectively. Modeling scenarios further elucidated the transport dynamics of Cd under simulated AgMAR conditions. Modeling scenarios indicated that with constant ponding of 5 cm over a year, Cd at 20 and 40 ppb concentrations in floodwater could potentially migrate below root zone systems. This study highlights the critical role of understanding Cd fate and transport in optimizing AgMAR systems and reducing Cd pollution risks, providing valuable insights for developing effective monitoring and management strategies.</p></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study of cadmium fate and transport mechanisms during artificial recharge in agricultural regions\",\"authors\":\"\",\"doi\":\"10.1016/j.gsd.2024.101327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agricultural Managed Aquifer Recharge (AgMAR) uses agricultural lands and floodwater to enhance groundwater recharge, but its effectiveness can be hindered by heavy metals like cadmium (Cd), which pose risks to groundwater quality. Cd is particularly concerning due to its high mobility and persistence in the environment. This study investigates Cd's fate and transport in agricultural regions during MAR, focusing on sandy loam soils through batch and column experiments. Equilibrium and kinetic batch studies were conducted under varying Cd concentrations and exposure times to quantify the adsorption capacity and rate. HYDRUS-2D was used to simulate Cd's transport in soil under various ponding depths and Cd concentrations. Results showed a maximum Cd adsorption capacity of 439.58 mg/kg, with the Freundlich isotherm providing a better fit (R<sup>2</sup> = 0.98) and indicating heterogeneous adsorption sites (<em>n</em> = 0.389). The kinetic experiment indicated chemisorption as the predominant mechanism, with an equilibrium adsorption capacity of 236.49 mg/kg. The pseudo-second-order kinetic model (rate constant 0.0016 h⁻<sup>1</sup>, R<sup>2</sup> = 0.99) suggested that adsorption kinetics are influenced by Cd concentration and available adsorption sites. The column experimental findings supported by HYDRUS-2D modeling successfully explained the fate and transport of Cd within the soil columns. The model fitted parameter values for Freundlich adsorption isotherm coefficient (KF), linearity factor (Nu), and kinetic rate coefficient are (α) 47.37 L/kg, 0.00389 cm³/ppm and 0.0029 min⁻<sup>1</sup>, respectively. Modeling scenarios further elucidated the transport dynamics of Cd under simulated AgMAR conditions. Modeling scenarios indicated that with constant ponding of 5 cm over a year, Cd at 20 and 40 ppb concentrations in floodwater could potentially migrate below root zone systems. This study highlights the critical role of understanding Cd fate and transport in optimizing AgMAR systems and reducing Cd pollution risks, providing valuable insights for developing effective monitoring and management strategies.</p></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X24002509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Experimental and numerical study of cadmium fate and transport mechanisms during artificial recharge in agricultural regions
Agricultural Managed Aquifer Recharge (AgMAR) uses agricultural lands and floodwater to enhance groundwater recharge, but its effectiveness can be hindered by heavy metals like cadmium (Cd), which pose risks to groundwater quality. Cd is particularly concerning due to its high mobility and persistence in the environment. This study investigates Cd's fate and transport in agricultural regions during MAR, focusing on sandy loam soils through batch and column experiments. Equilibrium and kinetic batch studies were conducted under varying Cd concentrations and exposure times to quantify the adsorption capacity and rate. HYDRUS-2D was used to simulate Cd's transport in soil under various ponding depths and Cd concentrations. Results showed a maximum Cd adsorption capacity of 439.58 mg/kg, with the Freundlich isotherm providing a better fit (R2 = 0.98) and indicating heterogeneous adsorption sites (n = 0.389). The kinetic experiment indicated chemisorption as the predominant mechanism, with an equilibrium adsorption capacity of 236.49 mg/kg. The pseudo-second-order kinetic model (rate constant 0.0016 h⁻1, R2 = 0.99) suggested that adsorption kinetics are influenced by Cd concentration and available adsorption sites. The column experimental findings supported by HYDRUS-2D modeling successfully explained the fate and transport of Cd within the soil columns. The model fitted parameter values for Freundlich adsorption isotherm coefficient (KF), linearity factor (Nu), and kinetic rate coefficient are (α) 47.37 L/kg, 0.00389 cm³/ppm and 0.0029 min⁻1, respectively. Modeling scenarios further elucidated the transport dynamics of Cd under simulated AgMAR conditions. Modeling scenarios indicated that with constant ponding of 5 cm over a year, Cd at 20 and 40 ppb concentrations in floodwater could potentially migrate below root zone systems. This study highlights the critical role of understanding Cd fate and transport in optimizing AgMAR systems and reducing Cd pollution risks, providing valuable insights for developing effective monitoring and management strategies.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.