所有 3 传递群都满足严格的厄尔多斯-柯-拉多性质

IF 1 3区 数学 Q1 MATHEMATICS
Venkata Raghu Tej Pantangi
{"title":"所有 3 传递群都满足严格的厄尔多斯-柯-拉多性质","authors":"Venkata Raghu Tej Pantangi","doi":"10.1016/j.ejc.2024.104057","DOIUrl":null,"url":null,"abstract":"<div><p>A subset <span><math><mi>S</mi></math></span> of a transitive permutation group <span><math><mrow><mi>G</mi><mo>≤</mo><mi>Sym</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is said to be an intersecting set if, for every <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>S</mi></mrow></math></span>, there is an <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span>. The stabilizer of a point in <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span> and its cosets are intersecting sets of size <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>/</mo><mi>n</mi></mrow></math></span>. Such families are referred to as canonical intersecting sets. A result by Meagher, Spiga, and Tiep states that if <span><math><mi>G</mi></math></span> is a 2-transitive group, then <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>/</mo><mi>n</mi></mrow></math></span> is the size of an intersecting set of maximum size in <span><math><mi>G</mi></math></span>. In some 2-transitive groups (for instance <span><math><mrow><mi>Sym</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Alt</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>), every intersecting set of maximum possible size is canonical. A permutation group, in which every intersecting family of maximum possible size is canonical, is said to satisfy the strict-EKR property. In this article, we investigate the structure of intersecting sets in 3-transitive groups. A conjecture by Meagher and Spiga states that all 3-transitive groups satisfy the strict-EKR property. Meagher and Spiga showed that this is true for the 3-transitive group <span><math><mrow><mi>PGL</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>. Using the classification of 3-transitive groups and some results in the literature, the conjecture reduces to showing that the 3-transitive group <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> satisfies the strict-EKR property. We show that <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> satisfies the strict-EKR property and as a consequence, we prove Meagher and Spiga’s conjecture. We also prove a stronger result for <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> by showing that “large” intersecting sets in <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> must be a subset of a canonical intersecting set. This phenomenon is called stability.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All 3-transitive groups satisfy the strict-Erdős–Ko–Rado property\",\"authors\":\"Venkata Raghu Tej Pantangi\",\"doi\":\"10.1016/j.ejc.2024.104057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A subset <span><math><mi>S</mi></math></span> of a transitive permutation group <span><math><mrow><mi>G</mi><mo>≤</mo><mi>Sym</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is said to be an intersecting set if, for every <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>S</mi></mrow></math></span>, there is an <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span>. The stabilizer of a point in <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span> and its cosets are intersecting sets of size <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>/</mo><mi>n</mi></mrow></math></span>. Such families are referred to as canonical intersecting sets. A result by Meagher, Spiga, and Tiep states that if <span><math><mi>G</mi></math></span> is a 2-transitive group, then <span><math><mrow><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow><mo>/</mo><mi>n</mi></mrow></math></span> is the size of an intersecting set of maximum size in <span><math><mi>G</mi></math></span>. In some 2-transitive groups (for instance <span><math><mrow><mi>Sym</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Alt</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>), every intersecting set of maximum possible size is canonical. A permutation group, in which every intersecting family of maximum possible size is canonical, is said to satisfy the strict-EKR property. In this article, we investigate the structure of intersecting sets in 3-transitive groups. A conjecture by Meagher and Spiga states that all 3-transitive groups satisfy the strict-EKR property. Meagher and Spiga showed that this is true for the 3-transitive group <span><math><mrow><mi>PGL</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>. Using the classification of 3-transitive groups and some results in the literature, the conjecture reduces to showing that the 3-transitive group <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> satisfies the strict-EKR property. We show that <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> satisfies the strict-EKR property and as a consequence, we prove Meagher and Spiga’s conjecture. We also prove a stronger result for <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> by showing that “large” intersecting sets in <span><math><mrow><mi>AGL</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> must be a subset of a canonical intersecting set. This phenomenon is called stability.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001422\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001422","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对每一个 g1,g2∈S 都存在一个 i∈[n],使得 g1(i)=g2(i) ,则称传递置换群 G≤Sym(n) 的子集 S 为交集。[n]中某点的稳定子及其余集是大小为 |G|/n 的交集。这样的族被称为典型相交集。Meagher、Spiga 和 Tiep 的一个结果指出,如果 G 是一个 2 传递群,那么 |G|/n 是 G 中最大相交集的大小。在某些 2 传递群(例如 Sym(n)、Alt(n))中,每个最大可能大小的相交集都是典型的。如果一个置换群中,每个最大可能大小的交集族都是典型的,那么这个置换群就满足严格-EKR 属性。本文将研究 3 传递群中相交集的结构。Meagher 和 Spiga 的猜想指出,所有 3 传递群都满足严格-EKR 性质。Meagher 和 Spiga 证明了这一点在 3 传递群 PGL(2,q) 中是正确的。利用 3 传递群的分类和文献中的一些结果,这一猜想简化为证明 3 传递群 AGL(n,2) 满足严格-EKR 性质。我们证明了 AGL(n,2) 满足严格-EKR 属性,从而证明了 Meagher 和 Spiga 的猜想。通过证明 AGL(n,2) 中的 "大 "相交集必须是一个典型相交集的子集,我们还证明了 AGL(n,2) 的一个更强的结果。这种现象被称为稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All 3-transitive groups satisfy the strict-Erdős–Ko–Rado property

A subset S of a transitive permutation group GSym(n) is said to be an intersecting set if, for every g1,g2S, there is an i[n] such that g1(i)=g2(i). The stabilizer of a point in [n] and its cosets are intersecting sets of size |G|/n. Such families are referred to as canonical intersecting sets. A result by Meagher, Spiga, and Tiep states that if G is a 2-transitive group, then |G|/n is the size of an intersecting set of maximum size in G. In some 2-transitive groups (for instance Sym(n), Alt(n)), every intersecting set of maximum possible size is canonical. A permutation group, in which every intersecting family of maximum possible size is canonical, is said to satisfy the strict-EKR property. In this article, we investigate the structure of intersecting sets in 3-transitive groups. A conjecture by Meagher and Spiga states that all 3-transitive groups satisfy the strict-EKR property. Meagher and Spiga showed that this is true for the 3-transitive group PGL(2,q). Using the classification of 3-transitive groups and some results in the literature, the conjecture reduces to showing that the 3-transitive group AGL(n,2) satisfies the strict-EKR property. We show that AGL(n,2) satisfies the strict-EKR property and as a consequence, we prove Meagher and Spiga’s conjecture. We also prove a stronger result for AGL(n,2) by showing that “large” intersecting sets in AGL(n,2) must be a subset of a canonical intersecting set. This phenomenon is called stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信