{"title":"评估性能评估数据和模型的一致性:二价金属在蒙脱石上的吸附作用","authors":"","doi":"10.1016/j.clay.2024.107569","DOIUrl":null,"url":null,"abstract":"<div><p>A detailed analysis of literature data on the retention of divalent metal by purified montmorillonite or montmorillonite-rich material (e.g. bentonite) was conducted. Data for which sufficient experimental conditions were available were modeled with the 2SPNE SC/CE model available in the literature, and with a “minimalist” model, which uses a minimum number of parameters to reproduce the data.</p><p>A successful data modeling could only be achieved if considering (i) cation exchange competition with aqueous Ca<sup>2+</sup> and Mg<sup>2+</sup>, originating from the dissolution of the clay mineral itself or accessory minerals and (ii) precipitation, at high pH, of phases incorporating the divalent metal of interest. However, in many studies, the concentration of aqueous Ca<sup>2+</sup> and Mg<sup>2+</sup> and, more generally, a full characterization of solution composition (e.g., Si, Al, dissolved organic carbon, alkalinity) is not provided, thus impeding accurate data modeling. Further difficulties stem from uncertainties related to the nature of the solids precipitating at high pH and missing or inaccurate thermodynamic data related to mineral solubility.</p><p>Log <em>K</em><sub>D</sub> values cannot be predicted from available literature data with an accuracy better than ±1 log unit, without sorption data obtained on a material representative of in situ conditions. In addition, the most reactive sites, commonly referred to as strong sites, which have been characterized only on some, but not all, reference clay materials, should not be considered in blind predictions based on the mineralogical composition of clay materials.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016913172400317X/pdfft?md5=8de5ac82cef0be2a25a265bf89ec58d3&pid=1-s2.0-S016913172400317X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An evaluation of the consistency of data and models for performance assessment: Divalent metal sorption on montmorillonite\",\"authors\":\"\",\"doi\":\"10.1016/j.clay.2024.107569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A detailed analysis of literature data on the retention of divalent metal by purified montmorillonite or montmorillonite-rich material (e.g. bentonite) was conducted. Data for which sufficient experimental conditions were available were modeled with the 2SPNE SC/CE model available in the literature, and with a “minimalist” model, which uses a minimum number of parameters to reproduce the data.</p><p>A successful data modeling could only be achieved if considering (i) cation exchange competition with aqueous Ca<sup>2+</sup> and Mg<sup>2+</sup>, originating from the dissolution of the clay mineral itself or accessory minerals and (ii) precipitation, at high pH, of phases incorporating the divalent metal of interest. However, in many studies, the concentration of aqueous Ca<sup>2+</sup> and Mg<sup>2+</sup> and, more generally, a full characterization of solution composition (e.g., Si, Al, dissolved organic carbon, alkalinity) is not provided, thus impeding accurate data modeling. Further difficulties stem from uncertainties related to the nature of the solids precipitating at high pH and missing or inaccurate thermodynamic data related to mineral solubility.</p><p>Log <em>K</em><sub>D</sub> values cannot be predicted from available literature data with an accuracy better than ±1 log unit, without sorption data obtained on a material representative of in situ conditions. In addition, the most reactive sites, commonly referred to as strong sites, which have been characterized only on some, but not all, reference clay materials, should not be considered in blind predictions based on the mineralogical composition of clay materials.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016913172400317X/pdfft?md5=8de5ac82cef0be2a25a265bf89ec58d3&pid=1-s2.0-S016913172400317X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016913172400317X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172400317X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An evaluation of the consistency of data and models for performance assessment: Divalent metal sorption on montmorillonite
A detailed analysis of literature data on the retention of divalent metal by purified montmorillonite or montmorillonite-rich material (e.g. bentonite) was conducted. Data for which sufficient experimental conditions were available were modeled with the 2SPNE SC/CE model available in the literature, and with a “minimalist” model, which uses a minimum number of parameters to reproduce the data.
A successful data modeling could only be achieved if considering (i) cation exchange competition with aqueous Ca2+ and Mg2+, originating from the dissolution of the clay mineral itself or accessory minerals and (ii) precipitation, at high pH, of phases incorporating the divalent metal of interest. However, in many studies, the concentration of aqueous Ca2+ and Mg2+ and, more generally, a full characterization of solution composition (e.g., Si, Al, dissolved organic carbon, alkalinity) is not provided, thus impeding accurate data modeling. Further difficulties stem from uncertainties related to the nature of the solids precipitating at high pH and missing or inaccurate thermodynamic data related to mineral solubility.
Log KD values cannot be predicted from available literature data with an accuracy better than ±1 log unit, without sorption data obtained on a material representative of in situ conditions. In addition, the most reactive sites, commonly referred to as strong sites, which have been characterized only on some, but not all, reference clay materials, should not be considered in blind predictions based on the mineralogical composition of clay materials.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...