Diariétou Sambakhé , Eric Gozé , Jean-Noël Bacro , Michael Dingkuhn , Myriam Adam , Malick Ndiaye , Bertrand Muller , Lauriane Rouan
{"title":"基于气候梯度背景下作物模型的表型图研究","authors":"Diariétou Sambakhé , Eric Gozé , Jean-Noël Bacro , Michael Dingkuhn , Myriam Adam , Malick Ndiaye , Bertrand Muller , Lauriane Rouan","doi":"10.1016/j.ecolmodel.2024.110840","DOIUrl":null,"url":null,"abstract":"<div><p>Due to increasing climate uncertainties, optimizing plant traits is essential for sustainable agriculture. This article presents an approach that combines advanced modelling techniques to identify optimal plant traits under various agro-environmental conditions. By integrating a crop model, a climate generator, and our PEQI algorithm (Profile Expected Quantile Improvement), our method aims to create ideotype maps tailored to specific regions.</p><p>We use the SAMARA model (Simulator of crop trait Assembly, MAnagement Response, and Adaptation), calibrated with trials carried in Sahel on a set of local varieties, to simulate crop growth in diverse environments. The PEQI algorithm adjusts varietal parameters to maximize expected yield, defining precise selection objectives known as ideotypes, which are particularly important in regions with irregular rainfall patterns like the Sahel.</p><p>With the PEQI algorithm based on a kriging metamodel, we ensure effective adaptation to spatially variable environments. By leveraging a climate generator to simulate meteorological variability, our integrated approach optimizes crop yields in regions such as Senegal, southern Mali, Burkina Faso, and Guinea-Bissau. The outcome is an ideotype map for sorghum, providing breeders with a robust decision-support tool to enhance crop performance amidst climate uncertainty.</p></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"498 ","pages":"Article 110840"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030438002400228X/pdfft?md5=9280a5787f4e0caf28ab6f830d79b02d&pid=1-s2.0-S030438002400228X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ideotype map research based on a crop model in the context of a climatic gradient\",\"authors\":\"Diariétou Sambakhé , Eric Gozé , Jean-Noël Bacro , Michael Dingkuhn , Myriam Adam , Malick Ndiaye , Bertrand Muller , Lauriane Rouan\",\"doi\":\"10.1016/j.ecolmodel.2024.110840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to increasing climate uncertainties, optimizing plant traits is essential for sustainable agriculture. This article presents an approach that combines advanced modelling techniques to identify optimal plant traits under various agro-environmental conditions. By integrating a crop model, a climate generator, and our PEQI algorithm (Profile Expected Quantile Improvement), our method aims to create ideotype maps tailored to specific regions.</p><p>We use the SAMARA model (Simulator of crop trait Assembly, MAnagement Response, and Adaptation), calibrated with trials carried in Sahel on a set of local varieties, to simulate crop growth in diverse environments. The PEQI algorithm adjusts varietal parameters to maximize expected yield, defining precise selection objectives known as ideotypes, which are particularly important in regions with irregular rainfall patterns like the Sahel.</p><p>With the PEQI algorithm based on a kriging metamodel, we ensure effective adaptation to spatially variable environments. By leveraging a climate generator to simulate meteorological variability, our integrated approach optimizes crop yields in regions such as Senegal, southern Mali, Burkina Faso, and Guinea-Bissau. The outcome is an ideotype map for sorghum, providing breeders with a robust decision-support tool to enhance crop performance amidst climate uncertainty.</p></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"498 \",\"pages\":\"Article 110840\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030438002400228X/pdfft?md5=9280a5787f4e0caf28ab6f830d79b02d&pid=1-s2.0-S030438002400228X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030438002400228X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438002400228X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Ideotype map research based on a crop model in the context of a climatic gradient
Due to increasing climate uncertainties, optimizing plant traits is essential for sustainable agriculture. This article presents an approach that combines advanced modelling techniques to identify optimal plant traits under various agro-environmental conditions. By integrating a crop model, a climate generator, and our PEQI algorithm (Profile Expected Quantile Improvement), our method aims to create ideotype maps tailored to specific regions.
We use the SAMARA model (Simulator of crop trait Assembly, MAnagement Response, and Adaptation), calibrated with trials carried in Sahel on a set of local varieties, to simulate crop growth in diverse environments. The PEQI algorithm adjusts varietal parameters to maximize expected yield, defining precise selection objectives known as ideotypes, which are particularly important in regions with irregular rainfall patterns like the Sahel.
With the PEQI algorithm based on a kriging metamodel, we ensure effective adaptation to spatially variable environments. By leveraging a climate generator to simulate meteorological variability, our integrated approach optimizes crop yields in regions such as Senegal, southern Mali, Burkina Faso, and Guinea-Bissau. The outcome is an ideotype map for sorghum, providing breeders with a robust decision-support tool to enhance crop performance amidst climate uncertainty.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).