用于光催化和有害农药及 UO22+ 离子超痕量监测的苧麻衍生 CoFe2O4-Carbon dots@Boehmite 平台的合理设计

IF 4.3 2区 化学 Q1 SPECTROSCOPY
{"title":"用于光催化和有害农药及 UO22+ 离子超痕量监测的苧麻衍生 CoFe2O4-Carbon dots@Boehmite 平台的合理设计","authors":"","doi":"10.1016/j.saa.2024.125111","DOIUrl":null,"url":null,"abstract":"<div><p>In view of exploiting natural resources for designing of effectual materials in favor of detection and obliteration of water pollutants, a fluorescent nanomaterial (CDBHCF) based on biomass derived carbon dots (CDs) was constructed. The CDs and cobalt ferrite (CF) particles were anchored on boehmite (BH) which served as a support material for CDs. The CDBHCF nanocomposite was prepared via facile hydrothermal treatment for selective recognition of Methyl parathion (MP) pesticide and uranyl ions (UO<sub>2</sub><sup>2+</sup>). The corresponding structural, morphological and opto-electronic properties of the nanomaterials have been investigated by different physicochemical techniques. The fluorescent CDBHCF probe was employed to detect extremely low concentration of MP and UO<sub>2</sub><sup>2+</sup> with detection limit of 22.4 nM and 4.4 nM, respectively. Ultimately, the proposed sensing platform was validated through real sample analysis. Besides, CDBHCF nanocomposite was utilized for photocatalytic abolition of Tetracycline (TC) in water samples. Initially, the impact of various operational parameters on the degradation efficiency, including catalyst dosage and initial pH were thoroughly examined. Under optimized conditions, the fabricated CDBHCF nanocomposite demonstrated excellent results for photocatalytic degradation of TC (92 % degradation in 120 min) under visible light illumination. Thus, the proposed strategy delivered an innovative insight for dual purpose of CDBHCF nanocomposite: as a fluorescent probe for real time monitoring and as a photocatalyst for removal of pollutants via simple photocatalytic degradation.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of Boerhavia diffusa derived CoFe2O4-Carbon dots@Boehmite platform for photocatalysis and ultra trace monitoring of hazardous pesticide and UO22+ ions\",\"authors\":\"\",\"doi\":\"10.1016/j.saa.2024.125111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In view of exploiting natural resources for designing of effectual materials in favor of detection and obliteration of water pollutants, a fluorescent nanomaterial (CDBHCF) based on biomass derived carbon dots (CDs) was constructed. The CDs and cobalt ferrite (CF) particles were anchored on boehmite (BH) which served as a support material for CDs. The CDBHCF nanocomposite was prepared via facile hydrothermal treatment for selective recognition of Methyl parathion (MP) pesticide and uranyl ions (UO<sub>2</sub><sup>2+</sup>). The corresponding structural, morphological and opto-electronic properties of the nanomaterials have been investigated by different physicochemical techniques. The fluorescent CDBHCF probe was employed to detect extremely low concentration of MP and UO<sub>2</sub><sup>2+</sup> with detection limit of 22.4 nM and 4.4 nM, respectively. Ultimately, the proposed sensing platform was validated through real sample analysis. Besides, CDBHCF nanocomposite was utilized for photocatalytic abolition of Tetracycline (TC) in water samples. Initially, the impact of various operational parameters on the degradation efficiency, including catalyst dosage and initial pH were thoroughly examined. Under optimized conditions, the fabricated CDBHCF nanocomposite demonstrated excellent results for photocatalytic degradation of TC (92 % degradation in 120 min) under visible light illumination. Thus, the proposed strategy delivered an innovative insight for dual purpose of CDBHCF nanocomposite: as a fluorescent probe for real time monitoring and as a photocatalyst for removal of pollutants via simple photocatalytic degradation.</p></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524012770\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524012770","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

为了利用自然资源设计出检测和消除水污染物的有效材料,我们构建了一种基于生物质衍生碳点(CD)的荧光纳米材料(CDBHCF)。碳点和钴铁氧体(CF)颗粒被锚定在作为碳点支撑材料的玻镁石(BH)上。通过简单的水热处理制备了 CDBHCF 纳米复合材料,用于选择性识别甲基对硫磷(MP)农药和铀酰离子(UO22+)。通过不同的物理化学技术研究了纳米材料相应的结构、形态和光电特性。荧光 CDBHCF 探针用于检测极低浓度的 MP 和 UO22+,检测限分别为 22.4 nM 和 4.4 nM。最终,所提出的传感平台通过实际样品分析得到了验证。此外,CDBHCF 纳米复合材料还被用于光催化去除水样中的四环素(TC)。最初,研究人员深入研究了各种操作参数对降解效率的影响,包括催化剂用量和初始 pH 值。在优化的条件下,所制备的 CDBHCF 纳米复合材料在可见光照射下对 TC 的光催化降解效果极佳(120 分钟内降解 92%)。因此,所提出的策略为 CDBHCF 纳米复合材料的双重用途提供了创新见解:既可作为荧光探针进行实时监测,又可作为光催化剂通过简单的光催化降解去除污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of Boerhavia diffusa derived CoFe2O4-Carbon dots@Boehmite platform for photocatalysis and ultra trace monitoring of hazardous pesticide and UO22+ ions

Rational design of Boerhavia diffusa derived CoFe2O4-Carbon dots@Boehmite platform for photocatalysis and ultra trace monitoring of hazardous pesticide and UO22+ ions

In view of exploiting natural resources for designing of effectual materials in favor of detection and obliteration of water pollutants, a fluorescent nanomaterial (CDBHCF) based on biomass derived carbon dots (CDs) was constructed. The CDs and cobalt ferrite (CF) particles were anchored on boehmite (BH) which served as a support material for CDs. The CDBHCF nanocomposite was prepared via facile hydrothermal treatment for selective recognition of Methyl parathion (MP) pesticide and uranyl ions (UO22+). The corresponding structural, morphological and opto-electronic properties of the nanomaterials have been investigated by different physicochemical techniques. The fluorescent CDBHCF probe was employed to detect extremely low concentration of MP and UO22+ with detection limit of 22.4 nM and 4.4 nM, respectively. Ultimately, the proposed sensing platform was validated through real sample analysis. Besides, CDBHCF nanocomposite was utilized for photocatalytic abolition of Tetracycline (TC) in water samples. Initially, the impact of various operational parameters on the degradation efficiency, including catalyst dosage and initial pH were thoroughly examined. Under optimized conditions, the fabricated CDBHCF nanocomposite demonstrated excellent results for photocatalytic degradation of TC (92 % degradation in 120 min) under visible light illumination. Thus, the proposed strategy delivered an innovative insight for dual purpose of CDBHCF nanocomposite: as a fluorescent probe for real time monitoring and as a photocatalyst for removal of pollutants via simple photocatalytic degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信