半线性子扩散方程分级网格上的 L2 型方法误差分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Natalia Kopteva
{"title":"半线性子扩散方程分级网格上的 L2 型方法误差分析","authors":"Natalia Kopteva","doi":"10.1016/j.aml.2024.109306","DOIUrl":null,"url":null,"abstract":"<div><p>A semilinear initial–boundary value problem with a Caputo time derivative of fractional order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is considered, solutions of which typically exhibit a singular behaviour at an initial time. For an L2-type discretization of order <span><math><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></math></span>, we give sharp pointwise-in-time error bounds on graded temporal meshes with arbitrary degree of grading.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109306"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0893965924003264/pdfft?md5=6e39bf3f9038caa96e147fc377174a7a&pid=1-s2.0-S0893965924003264-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Error analysis of an L2-type method on graded meshes for semilinear subdiffusion equations\",\"authors\":\"Natalia Kopteva\",\"doi\":\"10.1016/j.aml.2024.109306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A semilinear initial–boundary value problem with a Caputo time derivative of fractional order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is considered, solutions of which typically exhibit a singular behaviour at an initial time. For an L2-type discretization of order <span><math><mrow><mn>3</mn><mo>−</mo><mi>α</mi></mrow></math></span>, we give sharp pointwise-in-time error bounds on graded temporal meshes with arbitrary degree of grading.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109306\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003264/pdfft?md5=6e39bf3f9038caa96e147fc377174a7a&pid=1-s2.0-S0893965924003264-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003264\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个具有分数阶 α∈(0,1) 的卡普托时间导数的半线性初始边界值问题,其解通常在初始时间表现出奇异行为。对于阶数为 3-α 的 L2- 型离散化,我们给出了具有任意分级程度的分级时间网格上的尖锐时间点误差边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis of an L2-type method on graded meshes for semilinear subdiffusion equations

A semilinear initial–boundary value problem with a Caputo time derivative of fractional order α(0,1) is considered, solutions of which typically exhibit a singular behaviour at an initial time. For an L2-type discretization of order 3α, we give sharp pointwise-in-time error bounds on graded temporal meshes with arbitrary degree of grading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信