Julia S. Gauer , Abigail Ajanel , Lutale M. Kaselampao , Isabel Candir , Amanda D.V. MacCannell , Lee D. Roberts , Robert A. Campbell , Robert A.S. Ariëns
{"title":"植物萃取化合物可使高血糖状态下的血小板生物能和功能恢复正常","authors":"Julia S. Gauer , Abigail Ajanel , Lutale M. Kaselampao , Isabel Candir , Amanda D.V. MacCannell , Lee D. Roberts , Robert A. Campbell , Robert A.S. Ariëns","doi":"10.1016/j.rpth.2024.102548","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown.</p></div><div><h3>Objectives</h3><p>To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia <em>in vitro</em>.</p></div><div><h3>Methods</h3><p>Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers’ isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes).</p></div><div><h3>Results</h3><p>Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size.</p></div><div><h3>Conclusion</h3><p>Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.</p></div>","PeriodicalId":20893,"journal":{"name":"Research and Practice in Thrombosis and Haemostasis","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2475037924002437/pdfft?md5=da81283ebae9bbdd6adf35c823a86f11&pid=1-s2.0-S2475037924002437-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Plant-derived compounds normalize platelet bioenergetics and function in hyperglycemia\",\"authors\":\"Julia S. Gauer , Abigail Ajanel , Lutale M. Kaselampao , Isabel Candir , Amanda D.V. MacCannell , Lee D. Roberts , Robert A. Campbell , Robert A.S. Ariëns\",\"doi\":\"10.1016/j.rpth.2024.102548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown.</p></div><div><h3>Objectives</h3><p>To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia <em>in vitro</em>.</p></div><div><h3>Methods</h3><p>Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers’ isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes).</p></div><div><h3>Results</h3><p>Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size.</p></div><div><h3>Conclusion</h3><p>Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.</p></div>\",\"PeriodicalId\":20893,\"journal\":{\"name\":\"Research and Practice in Thrombosis and Haemostasis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2475037924002437/pdfft?md5=da81283ebae9bbdd6adf35c823a86f11&pid=1-s2.0-S2475037924002437-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Practice in Thrombosis and Haemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2475037924002437\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Practice in Thrombosis and Haemostasis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2475037924002437","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Plant-derived compounds normalize platelet bioenergetics and function in hyperglycemia
Background
Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown.
Objectives
To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia in vitro.
Methods
Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers’ isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes).
Results
Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size.
Conclusion
Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.