{"title":"近红外光谱法用于猕猴桃质量评估和货架期预测","authors":"","doi":"10.1016/j.postharvbio.2024.113201","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a non-destructive quality testing method along with shelf-life prediction of Xu Xiang ready-to-eat kiwifruit were developed using near-infrared spectroscopy (NIR) techniques. Several traditional quality indicators (hardness, soluble solids content, and dry matter) were evaluated. Partial least squares regression (PLS) was used to predict the intrinsic quality attributes of the samples. Competitive adaptive reweighted sampling algorithm (CARS) and uninformative variable elimination (UVE) algorithm were used to select the characteristic wavelengths. Prediction models for hardness, soluble solids content and dry matter were developed. The results showed that the prediction ability of the models could be improved by screening the characteristic wavelengths of CARS and UVE. Among them, the CARS-SNV-PLS model based on soluble solids had the best prediction ability (RMSEP of 0.430 and Rp<sup>2</sup> of 0.958). Then, an NIR-based residual shelf-life prediction model was obtained by linking the measured quality indicators to the residual shelf-life, which was well validated with an RMSEP of 1.64 and an Rp<sup>2</sup> of 0.939. Therefore, this study demonstrated the potential of combining CARS, SNV, and PLS for the non-destructive testing of ready-to-eat kiwifruit to provide technical support and solution.</p></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIR spectroscopy for quality assessment and shelf-life prediction of kiwifruit\",\"authors\":\"\",\"doi\":\"10.1016/j.postharvbio.2024.113201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a non-destructive quality testing method along with shelf-life prediction of Xu Xiang ready-to-eat kiwifruit were developed using near-infrared spectroscopy (NIR) techniques. Several traditional quality indicators (hardness, soluble solids content, and dry matter) were evaluated. Partial least squares regression (PLS) was used to predict the intrinsic quality attributes of the samples. Competitive adaptive reweighted sampling algorithm (CARS) and uninformative variable elimination (UVE) algorithm were used to select the characteristic wavelengths. Prediction models for hardness, soluble solids content and dry matter were developed. The results showed that the prediction ability of the models could be improved by screening the characteristic wavelengths of CARS and UVE. Among them, the CARS-SNV-PLS model based on soluble solids had the best prediction ability (RMSEP of 0.430 and Rp<sup>2</sup> of 0.958). Then, an NIR-based residual shelf-life prediction model was obtained by linking the measured quality indicators to the residual shelf-life, which was well validated with an RMSEP of 1.64 and an Rp<sup>2</sup> of 0.939. Therefore, this study demonstrated the potential of combining CARS, SNV, and PLS for the non-destructive testing of ready-to-eat kiwifruit to provide technical support and solution.</p></div>\",\"PeriodicalId\":20328,\"journal\":{\"name\":\"Postharvest Biology and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postharvest Biology and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925521424004460\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424004460","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
NIR spectroscopy for quality assessment and shelf-life prediction of kiwifruit
In this study, a non-destructive quality testing method along with shelf-life prediction of Xu Xiang ready-to-eat kiwifruit were developed using near-infrared spectroscopy (NIR) techniques. Several traditional quality indicators (hardness, soluble solids content, and dry matter) were evaluated. Partial least squares regression (PLS) was used to predict the intrinsic quality attributes of the samples. Competitive adaptive reweighted sampling algorithm (CARS) and uninformative variable elimination (UVE) algorithm were used to select the characteristic wavelengths. Prediction models for hardness, soluble solids content and dry matter were developed. The results showed that the prediction ability of the models could be improved by screening the characteristic wavelengths of CARS and UVE. Among them, the CARS-SNV-PLS model based on soluble solids had the best prediction ability (RMSEP of 0.430 and Rp2 of 0.958). Then, an NIR-based residual shelf-life prediction model was obtained by linking the measured quality indicators to the residual shelf-life, which was well validated with an RMSEP of 1.64 and an Rp2 of 0.939. Therefore, this study demonstrated the potential of combining CARS, SNV, and PLS for the non-destructive testing of ready-to-eat kiwifruit to provide technical support and solution.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.