奇数棱柱的极值图

IF 0.7 3区 数学 Q2 MATHEMATICS
Xiaocong He , Yongtao Li , Lihua Feng
{"title":"奇数棱柱的极值图","authors":"Xiaocong He ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng","doi":"10.1016/j.disc.2024.114249","DOIUrl":null,"url":null,"abstract":"<div><p>The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> of a graph <em>H</em> is the maximum number of edges in an <em>n</em>-vertex graph which does not contain <em>H</em> as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup></math></span>, which is defined as the Cartesian product of an odd cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and an edge <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Applying a deep theorem of Simonovits and a stability result of Yuan (2022) <span><span>[55]</span></span>, we shall determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and sufficiently large <em>n</em>, and we also characterize the extremal graphs. Moreover, in the case of <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, motivated by a recent result of Xiao et al. (2022) <span><span>[49]</span></span>, we will determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <em>n</em> instead of for sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114249"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003807/pdfft?md5=e2bc8fb4249126377f15948ed27aebbf&pid=1-s2.0-S0012365X24003807-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extremal graphs for the odd prism\",\"authors\":\"Xiaocong He ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng\",\"doi\":\"10.1016/j.disc.2024.114249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> of a graph <em>H</em> is the maximum number of edges in an <em>n</em>-vertex graph which does not contain <em>H</em> as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup></math></span>, which is defined as the Cartesian product of an odd cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and an edge <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Applying a deep theorem of Simonovits and a stability result of Yuan (2022) <span><span>[55]</span></span>, we shall determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and sufficiently large <em>n</em>, and we also characterize the extremal graphs. Moreover, in the case of <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, motivated by a recent result of Xiao et al. (2022) <span><span>[49]</span></span>, we will determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <em>n</em> instead of for sufficiently large <em>n</em>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114249\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003807/pdfft?md5=e2bc8fb4249126377f15948ed27aebbf&pid=1-s2.0-S0012365X24003807-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003807\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003807","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 H 的图兰数 ex(n,H) 是 n 个顶点图中不包含 H 作为子图的最大边数。西蒙诺维茨在一系列著作中对正多面体的图兰数进行了广泛研究。在本文中,我们将提出棱 C2k+1□ 的精确图兰数,它被定义为奇数循环 C2k+1 与边 K2 的笛卡尔积。应用 Simonovits 的深层定理和 Yuan (2022) 的稳定性结果[55],我们将确定每 k≥1 且 n 足够大时 ex(n,C2k+1□) 的精确值,并描述极值图的特征。此外,在 k=1 的情况下,受肖等人(2022)的最新结果[49]的启发,我们将确定每个 n 而不是足够大的 n 的 ex(n,C3□) 的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal graphs for the odd prism

The Turán number ex(n,H) of a graph H is the maximum number of edges in an n-vertex graph which does not contain H as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism C2k+1, which is defined as the Cartesian product of an odd cycle C2k+1 and an edge K2. Applying a deep theorem of Simonovits and a stability result of Yuan (2022) [55], we shall determine the exact value of ex(n,C2k+1) for every k1 and sufficiently large n, and we also characterize the extremal graphs. Moreover, in the case of k=1, motivated by a recent result of Xiao et al. (2022) [49], we will determine the exact value of ex(n,C3) for every n instead of for sufficiently large n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信