{"title":"奇数棱柱的极值图","authors":"Xiaocong He , Yongtao Li , Lihua Feng","doi":"10.1016/j.disc.2024.114249","DOIUrl":null,"url":null,"abstract":"<div><p>The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> of a graph <em>H</em> is the maximum number of edges in an <em>n</em>-vertex graph which does not contain <em>H</em> as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup></math></span>, which is defined as the Cartesian product of an odd cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and an edge <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Applying a deep theorem of Simonovits and a stability result of Yuan (2022) <span><span>[55]</span></span>, we shall determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and sufficiently large <em>n</em>, and we also characterize the extremal graphs. Moreover, in the case of <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, motivated by a recent result of Xiao et al. (2022) <span><span>[49]</span></span>, we will determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <em>n</em> instead of for sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114249"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003807/pdfft?md5=e2bc8fb4249126377f15948ed27aebbf&pid=1-s2.0-S0012365X24003807-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extremal graphs for the odd prism\",\"authors\":\"Xiaocong He , Yongtao Li , Lihua Feng\",\"doi\":\"10.1016/j.disc.2024.114249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> of a graph <em>H</em> is the maximum number of edges in an <em>n</em>-vertex graph which does not contain <em>H</em> as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup></math></span>, which is defined as the Cartesian product of an odd cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and an edge <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Applying a deep theorem of Simonovits and a stability result of Yuan (2022) <span><span>[55]</span></span>, we shall determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and sufficiently large <em>n</em>, and we also characterize the extremal graphs. Moreover, in the case of <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>, motivated by a recent result of Xiao et al. (2022) <span><span>[49]</span></span>, we will determine the exact value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>□</mo></mrow></msubsup><mo>)</mo></math></span> for every <em>n</em> instead of for sufficiently large <em>n</em>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114249\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003807/pdfft?md5=e2bc8fb4249126377f15948ed27aebbf&pid=1-s2.0-S0012365X24003807-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003807\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003807","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
图 H 的图兰数 ex(n,H) 是 n 个顶点图中不包含 H 作为子图的最大边数。西蒙诺维茨在一系列著作中对正多面体的图兰数进行了广泛研究。在本文中,我们将提出棱 C2k+1□ 的精确图兰数,它被定义为奇数循环 C2k+1 与边 K2 的笛卡尔积。应用 Simonovits 的深层定理和 Yuan (2022) 的稳定性结果[55],我们将确定每 k≥1 且 n 足够大时 ex(n,C2k+1□) 的精确值,并描述极值图的特征。此外,在 k=1 的情况下,受肖等人(2022)的最新结果[49]的启发,我们将确定每个 n 而不是足够大的 n 的 ex(n,C3□) 的精确值。
The Turán number of a graph H is the maximum number of edges in an n-vertex graph which does not contain H as a subgraph. The Turán number of regular polyhedrons was widely studied in a series of works due to Simonovits. In this paper, we shall present the exact Turán number of the prism , which is defined as the Cartesian product of an odd cycle and an edge . Applying a deep theorem of Simonovits and a stability result of Yuan (2022) [55], we shall determine the exact value of for every and sufficiently large n, and we also characterize the extremal graphs. Moreover, in the case of , motivated by a recent result of Xiao et al. (2022) [49], we will determine the exact value of for every n instead of for sufficiently large n.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.